Skip to main content

Axial elastic shear waves in fiber-reinforced composites

  • Chapter
Self-Consistent Methods for Composites

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 150))

  • 633 Accesses

The self-consistent methods developed in Chapters 2 and 3 may be applied to the analysis of elastic wave propagation in composites without essential modifications. Nevertheless, elastic waves introduce specific difficulties. First, two types of elastic waves (longitudinal and transverse waves of various polarizations) may propagate in the composites, and the dispersion equations for each wave should be derived by the methods. Secondly, elastic waves oblige us to consider a system of two integral equations for the displacement and strain fields, and this makes the analysis more cumbersome than that for scalar or electromagnetic waves.

In this Chapter we consider a relatively simple case: propagation of axial elastic shear waves through composites reinforced with long unidirectional fibers. The wave vector of these waves is orthogonal to the fiber axes, and the polarization vector coincides with the fiber directions. In this case, there is only one nonzero component of the displacement field in the composite, and only one type of wave propagates in the composite. This makes the algorithm of the self-consistent methods more transparent than this for other composites in which a wave of one type generates waves of other types. The structure of this chapter is as follows.

In Section 4.1, the integral equations of the axial shear wave propagation problem are considered. In Section 4.2, the general scheme of the EMM is developed for construction of the dispersion equation for the mean wave field in the composite. In Section 4.3, the EFM is applied to the solution of the same problem. Section 4.4 is devoted to the solutions of the one-particle problems of both methods. In Sections 4.5 and 4.6, the solutions of the dispersion equations in the long and short-wave regions are constructed. In Section 4.7, the results of numerical solutions of the dispersion equations of both methods are compared in a wide region of frequencies of the incident field. Section 4.8 is devoted to wave propagation in composites with periodic arrangements of cylindrical fibers. We show that the EFM predicts the existence of pass and stop bands in the frequency region for the propagating waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Axial elastic shear waves in fiber-reinforced composites. In: Self-Consistent Methods for Composites. Solid Mechanics and its Applications, vol 150. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6968-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6968-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6967-3

  • Online ISBN: 978-1-4020-6968-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics