We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

KAM theory with applications to Hamiltonian partial differential equations | SpringerLink
Skip to main content

KAM theory with applications to Hamiltonian partial differential equations

  • Conference paper
Hamiltonian Dynamical Systems and Applications

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

  • 1970 Accesses

In these notes I present a KAM theorem on the existence of lower dimensional invariant tori for a class of nearly integrable Hamiltonian systems of infinite dimensions, where the second Melnikov’s conditions are completely eliminated and the algebraic structure of the normal frequencies is not required. This theorem can be used to construct invariant tori and quasi-periodic solutions for nonlinear wave equations, Schrödinger equations and other equations of any spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobenko, A.I. and Kuksin, S.B., The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation, Comment. Math. Helv. 70 (1995), no. 1, 63-112.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bourgain, J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear PDE. Int. Math. Research Notices 11 (1994), 475-497.

    Article  MathSciNet  Google Scholar 

  3. 3. Bourgain, J., Periodic solutions of nonlinear wave equations. Harmonic analysis and partial equations, Chicago Univ. Press (1999), pp. 69-97.

    Google Scholar 

  4. Bourgain, J., Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation. Ann. Math. 148 (1998), 363-439.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain, J., Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies 158 Princeton University Press, Princeton, NJ, (2005).

    Google Scholar 

  6. Bourgain, J., On Melnikov’s persistence problem, Math. Res. Lett. 4 (1997), 445-458.

    MATH  MathSciNet  Google Scholar 

  7. Craig, W. and Wayne, C.E., Newton’s method and periodic solutions of nonlinear wave equation, Commun. Pure. Appl. Math. 46 (1993), 1409-1501.

    Article  MATH  MathSciNet  Google Scholar 

  8. Eliasson, L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scula Norm. Sup. Pisa CL Sci. 15 (1988), 115-147.

    MATH  MathSciNet  Google Scholar 

  9. Frohlich, J. and Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or lower energy. Commun. Math. Phys. 88 (1983), 151-184.

    Article  MathSciNet  Google Scholar 

  10. Kuksin, S.B., Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21 (1987), 192-205.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kuksin, S.B., Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Mathematics, vol. 1556, Springer, Berlin (1993).

    MATH  Google Scholar 

  12. . Kuksin, S.B., Elements of a qualitative theory of Hamiltonian PDEs, Proceedings of ICM 1998, Vol. II, Doc. Math. J. DMV (1998), 819-829.

    Google Scholar 

  13. Melnikov, V.K., On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR 165:6 (1965), 1245-1248; Sov. Math. Dokl. 6 (1965), 1592-1596.

    MathSciNet  Google Scholar 

  14. Melnikov, V.K., A family of conditionally periodic solutions of a Hamiltonian system, Dokl. Akad. Nauk SSSR 181:3 (1968), 546-549; Sov. Math. Dokl. 9 (1968), 882-886.

    MathSciNet  Google Scholar 

  15. Marmi, S. and Yoccoz, J.-C., Some open problems related to small divisors, (Lecture Notes in Math. 1784). Springer, New York (2002).

    Google Scholar 

  16. Pöschel, J., On elliptic lower dimensional tori in hamiltonian systems, Math. Z. 202 (1989), 559-608.

    Article  MATH  MathSciNet  Google Scholar 

  17. Pöschel, J., A KAM-Theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup. Pisa 23 (1996), 119-148.

    MATH  Google Scholar 

  18. Pöschel, J., Quasi-periodic solution for nonlinear wave equation, Commun. Math. Helvetici 71 (1996), 269-296.

    Article  MATH  Google Scholar 

  19. Rabinowitz, P.H., Free vibrations for a semilinear wave equation. Commm. Pure Appl. Math. 31 (1978), 31-68.

    MATH  MathSciNet  Google Scholar 

  20. Wayne, C.E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys, 127 (1990), no. 3, 479-528.

    Article  MATH  MathSciNet  Google Scholar 

  21. Yuan, X., Invariant manifold of hyperbolic-elliptic type for nonlinear wave equation. IMMS, 18(2003),1111-1136.

    Google Scholar 

  22. Yuan, X., Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension, J. Diff. Eq., 195 (2003), 230-242.

    Article  MATH  Google Scholar 

  23. Yuan, X., Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations, 230 (2006), 213-274.

    Article  MATH  MathSciNet  Google Scholar 

  24. Yuan, X., Invariant tori of nonlinear wave equations with a prescribed potential. Discrete Continuous Dynamical Sys., 16 (2006), no. 3 615-634.

    Google Scholar 

  25. Yuan, X., A KAM theorem with applications to partial differential equations of higher dimensions, Commun. Math. Phys., 275 (2007), 97-137.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Yuan, X. (2008). KAM theory with applications to Hamiltonian partial differential equations. In: Craig, W. (eds) Hamiltonian Dynamical Systems and Applications. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6964-2_9

Download citation

Publish with us

Policies and ethics