Skip to main content

A Birkhoff normal form theorem for some semilinear PDEs

  • Conference paper
Hamiltonian Dynamical Systems and Applications

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

In these lectures we present an extension of Birkhoff normal form theorem to some Hamiltonian PDEs. The theorem applies to semilinear equations with nonlinearity of a suitable class.We present an application to the nonlinear wave equation on a segment or on a sphere. We also give a complete proof of all the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bambusi. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 12:823-850, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Bambusi. Birkhoff normal form for some nonlinear PDEs. Comm. Math. Physics, 234:253-283, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Bambusi, J.M. Delort, B. Grébert, and J. Szeftel. Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 2007.

    Google Scholar 

  4. D. Bambusi and B. Grébert. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Benettin, L. Galgani, and A. Giorgilli. A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech., 37:1-25, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Bourgain. Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations. Geometric Functional Anal, 6:201-230,1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. Jean Bourgain. On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE. Internat. Math. Res. Notices, (6):277-304, 1996.

    Article  MathSciNet  Google Scholar 

  8. J. Bourgain. On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in RD. J. Anal. Math., 72:299-310, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bourgain. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation. Ann. Math., 148:363-439, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Bourgain. On diffusion in high-dimensional Hamiltonian systems and PDE. J. Anal. Math., 80:1-35, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005.

    Google Scholar 

  12. W. Craig and C. E. Wayne. Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math., 46:1409-1498, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. M. Delort and J. Szeftel. Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres. Internat. Math. Res. Notices, 37:1897-1966, 2004.

    Article  MathSciNet  Google Scholar 

  14. J.-M. Delort and J. Szeftel. Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Amer. J. Math., 128(5):1187-1218, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. L. Eliasson and S. B. Kuksin. KAM for non-linear Schrödinger equation. Preprint, 2006.

    Google Scholar 

  16. B. Grébert. Birkhoff normal form and Hamiltonian PDES. Preprint., 2006.

    Google Scholar 

  17. S. Klainerman. On “almost global” solutions to quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math., 36:325-344, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. B. Kuksin and J. Pöschel. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math., 143:149-179, 1996.

    Article  MATH  Google Scholar 

  19. S. B. Kuksin. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl., 21:192-205, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. E. Wayne. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Physics, 127:479-528, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Xu, J. You, and Q. Qiu. Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z., 226:375-387, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  22. X. Yuan. A KAM theorem with applications to partial differential equations of higher dimensions. Commun. Math. Phys to appear (Preprint 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Bambusi, D. (2008). A Birkhoff normal form theorem for some semilinear PDEs. In: Craig, W. (eds) Hamiltonian Dynamical Systems and Applications. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6964-2_11

Download citation

Publish with us

Policies and ethics