Advertisement

Biosensing Configurations Using Guided Wave Resonant Structures

  • I. Abdulhalim
Part of the NATO Science for Peace and Security Series book series (NAPSB)

Resonant structures are characterized by a high quality factor representing the sensitivity to perturbations in a cavity. In guided wave resonant structures the optical field is evanescent, forming a region where the resonance can be modified by externally varying the refractive index within this evanescence region. The resonance nature of these structures then allows high sensitivity to analytes, gases, or other external index perturbations down to the order of 10-8 RIU. In this article several configurations of guided wave resonant structures and their use for sensing are reviewed with special emphasis on grating coupled resonant structures. The sensor performance is discussed using analytic approaches based on planar waveguide sensors theory and using the 4 × 4 characteristic matrix approaches for multilayered structure and with homogenized grating treated as a uniaxial thin film. The results agree very well with experiment and with rigorous electromagnetic calculations even when the cover is anisotropic medium such as a liquid crystal that can be used for tunable filtering or temperature sensing.

Keywords

Biosensors optical sensors tunable filters resonant mirror waveguides gratings guided wave resonance microresonators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. S. Ligler and C. A. Rowe Taitt, Eds., Optical Biosensors: Present and Future, Elsevier, Amsterdam, The Netherlands, 2002.Google Scholar
  2. 2.
    J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B 54, 3-15 (1999).CrossRefGoogle Scholar
  3. 3.
    L. S. Grattan and B. T. Meggett, Eds., Optical Fiber Sensor Technology: Advanced Applications - Bragg Gratings and Distributed Sensors, Kluwer Acdemic Publishers, Boston, 2000.Google Scholar
  4. 4.
    D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, Resonant field enhancements from metal nanoparticle arrays, Nano Letters 4, 153-158 (2004).CrossRefADSGoogle Scholar
  5. 5.
    A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics, IPN Progress Report 42-162 August 15, (2005)Google Scholar
  6. 6.
    R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, N. J. Goddard, The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation, Biosensors and Bioelectronics 8, 347-354 (1999).CrossRefGoogle Scholar
  7. 7.
    I. D. Block, L. L. Chan, and B. T. Cunningham, Photonic crystal optical biosensor incorporating structured low-index porous dielectric, Sensors and Actuators B 120,187-193 (2006).CrossRefGoogle Scholar
  8. 8.
    M. A. Duguay, Y. Kokobun and T. L. Koch, Antiresonant Reflecting Optical Waveguides in SiO2-Si multilayer structures, Applied Physics Letters 49, 13-16 (1986), 13-16.CrossRefADSGoogle Scholar
  9. 9.
    K. Vahala, Ed., Optical Microcavities, World Scientific, Singapore, 2004.Google Scholar
  10. 10.
    F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Protein detection by optical shift of a resonant microcavity, Applied Physics Letters 80, 4057-4059 (2002).CrossRefADSGoogle Scholar
  11. 11.
    H. Zhu, J. D. Suter, I. M. White, and X. Fan, Aptamer based microsphere biosensor for thrombin detection, Sensors 6, 785-795 (2006).CrossRefGoogle Scholar
  12. 12.
    F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities, Biophysical Journal 85, 1974-1979 (2003).CrossRefADSGoogle Scholar
  13. 13.
    R. W. Boyd and J. E. Heebner, Sensitive disk resonator photonic biosensor, Applied Optics 40, 5742-5747 (2001).CrossRefADSGoogle Scholar
  14. 14.
    N. J. Goddard, D. Pollard-Knight, and C. H. Maule, Real-time biomolecular interaction analysis using the resonant mirror sensor, The Analyst 119, 583-588 (1994).CrossRefADSGoogle Scholar
  15. 15.
    A. Brecht, A. Klotz, C. Barzen, G. Gauglitz, R. D. Harris, G. R. Quigley, J. S. Wilkinson, P. Sztajnbok, R. Abukensha, J. Gascon, A. Oubina, and D. Barcelo, Optical immunoprobe development for multiresidue monitoring in water, Anal. Chim. Acta 362, 69-79 (1998).CrossRefGoogle Scholar
  16. 16.
    A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, Light modulation with resonant grating-waveguide structures, Optics Letters 21, 1564-1566 (1996).CrossRefADSGoogle Scholar
  17. 17.
    A. Sharon, D. Rosenblatt, and A. A. Friesem, Resonant grating-waveguide structures for visible and near-infrared radiation, J. Opt. Soc. Am. A 14, 2985-2993 (1997).CrossRefADSGoogle Scholar
  18. 18.
    I. Abdulhalim, Anisotropic layers in waveguides for tuning and tunable filtering, Proceedings of SPIE 6135, 179-188 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    K. Tiefenthaler, and W. Lukosz, Sensitivity of grating couplers as integrated optical chemical sensors, J. Opt. Soc. Am. B 6, 209-220 (1989).CrossRefADSGoogle Scholar
  20. 20.
    R. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Philos. Mag. 4, 396-402 (1902).Google Scholar
  21. 21.
    U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), J. Opt. Soc. Am. A 31, 213-222 (1941).CrossRefADSGoogle Scholar
  22. 22.
    A. Hessel and A. A. Oliner, A new theory of Wood’s anomalies on optical gratings, Appl. Opt. 4, 1275-1297 (1965).CrossRefADSGoogle Scholar
  23. 23.
    M. Neviere, “ The homogeneous problem, ” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.Google Scholar
  24. 24.
    E.Popov, “Light diffraction by relief gratings: a microscopic and macroscopic view,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1993), Vol. XXXI, 139-187.Google Scholar
  25. 25.
    T. Tamir and S. Zhang, Resonant scattering by multilayered dielectric gratings, J. Opt. Soc. Am. A 14, 1607-1616 (1997).CrossRefADSGoogle Scholar
  26. 26.
    S. M. Norton, G. M. Morris, and T. Erdogan, Experimental investigation of resonantgrating filter line shapes in comparison with theoretical models, J. Opt. Soc. Am. A 15, 464-472 (1998).CrossRefADSGoogle Scholar
  27. 27.
    R. Magnusson and S. S. Want, New principles of optical filters, Appl. Phys. Lett. 61, 1022-1024 (1992).CrossRefADSGoogle Scholar
  28. 28.
    S. Peng and G. Morris, Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings, Opt. Lett. 21, 549-551 (1996).CrossRefADSGoogle Scholar
  29. 29.
    D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, Optical fiber endface biosensor based on resonances in dielectric waveguide gratings, Proc. SPIE 39, 86 (2000).CrossRefGoogle Scholar
  30. 30.
    B. Cunningham, P. Li, B. Lin, and J. Pepper, Colorimetric resonant reflection as a direct biochemical assay technique, Sensors Actuators B 81, 316-328 (2002).CrossRefGoogle Scholar
  31. 31.
    J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, Resonant grating filters as refractive index sensors for chemical and biological detections, J. Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23, 3006-3010 (2005).CrossRefADSGoogle Scholar
  32. 32.
    M. A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug Discovery, 1, 515-528 (2002).CrossRefGoogle Scholar
  33. 33.
    V. V. Meriakri, I. P. Nikitin, and M. P. Parkhomenko, Frequency-selective properties of modified dielectric gratings, Int.J.Infrared & Millimeter Waves, 17, 1769-1778 (1996).CrossRefADSGoogle Scholar
  34. 34.
    R. Magnusson, S. S. Wang, T. D. Black and A. Sohn, Resonance properties of dielectric waveguide gratings:theory and experiments at 418 GHz, IEEE Trans. Antennas Propag., 42, 567-569 (1994).CrossRefADSGoogle Scholar
  35. 35.
    P. S. Priambodo, T. A. Maldonado and R. Magnusson, Fabrication and characterization of high-quality waveguide-mode resonant optical filters, Appl. Phys. Lett. 83, 3248-3250 (2003).CrossRefADSGoogle Scholar
  36. 36.
    D. Rosenblatt, A. Sharon, and A. A. Friesem, Resonant Grating Waveguide Structures, IEEE J. Quant. Electron. 33, 2038-2059 (1997).CrossRefADSGoogle Scholar
  37. 37.
    S. Glasberg, A. Sharon, D. Rosenblat, and A. A. Friesem, Spectral shifts and line shapes asymmetries in the resonant response of grating waveguide structures, Opt.Commu. 145, 291-299 (1998).CrossRefADSGoogle Scholar
  38. 38.
    M. Nevie`re, R. Petit, and M. Cadilhac, Systematic study of resonances of holographic thin-film couplers, Opt. Commun. 9, 48-53 (1973).CrossRefADSGoogle Scholar
  39. 39.
    M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, Marcel Dekker, New-York, 2003.Google Scholar
  40. 40.
    I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media, J. Opt. A: Pure Appl. Opt., 1, 646-653 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2008

Authors and Affiliations

  • I. Abdulhalim
    • 1
  1. 1.Department of Electrooptic EngineeringBen Gurion University of the NegevIsrael

Personalised recommendations