Skip to main content

An Introduction to Radiation Effects on Optical Components and Fiber Optic Sensors

  • Conference paper
Optical Waveguide Sensing and Imaging

We review the effects of ionizing radiation on various types of optical components including optical fiber sensors and summarize some of their applications in particular environments where the presence of energetic radiation is a concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Holmes-Siedle and L. Adams, Handbook of radiation effects (Oxford University Press, Oxford, 1993).

    Google Scholar 

  2. F. Wrobel, in: Conférence RADECS 2005, Short Course Notebook - New challenges for Radiation Tolerance Assessment, edited by A. Fernandez Fernandez (Cap d’Agde, 2005), pp. 5-31.

    Google Scholar 

  3. D.L. Griscom, Nature of defects and defect generation in optical glasses, SPIE Proceedings 541, 38-59 (1985).

    Google Scholar 

  4. ASTM E722-04e1 Standard Practice for Characterizing Neutron Energy Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation- Hardness Testing of Electronics (ASTM, 2004).

    Google Scholar 

  5. A. Vasilescu and G. Lindstroem, Displacement damage in silicon, on-line compilation (February 2007); http://sesam.desy.de/members/gunnar/Si-dfuncs.html

  6. Radiation belt modeling for living with a star (February 2007); http://radbelts.gsfc.nasa.gov

  7. J.L. Barth, C.S. Dyer and E.G. Stassinopoulos, Space, Atmospheric, and Terrestrial Radiation Environments, IEEE Transactions on Nuclear Science 50, 466-482 (2003).

    Article  ADS  Google Scholar 

  8. Radiation effects and Analysis, NASA Goddard Space Flight Center (February 2007); http://radhome.gsfc.nasa.gov

  9. A.H. Johnston and B.G. Rax, Proton damage in linear and digital optocouplers, IEEE Transactions on Nuclear Science 47, 675-681 (2000).

    Article  ADS  Google Scholar 

  10. J.J. Jimenez, M.T. Alvarez, R. Tamayo, J.M. Oter, J.A. Dominguez, I. Arruego, J. Sanchez-Paramo and H. Guerrero, Proton radiation effects in high power LEDs and IREDs for optical wireless links for intra-satellite communications, 2006 IEEE Radiation Effects Data Workshop, Workshop Record, 77-84 (IEEE, 2006).

    Google Scholar 

  11. E.J. Friebele and L.R. Wasserman, Development of Radiation-Hard Fiber for IFOGs, 18th International Optical Fiber Sensors Conference Technical Digest, ME2 (Optical Society of America, Washington DC, 2006).

    Google Scholar 

  12. V.M.N. Passaro and M.N. Armenise, Neutron and gamma radiation effects in proton exchanged optical waveguides, Optics Express 10, 960-964 (2002).

    ADS  Google Scholar 

  13. R.S. Fielder, D. Klemer and K.L. Stinson-Bagby, High neutron fluence survivability testing of advanced fiber Bragg grating sensors, AIP Conference Proceedings 699, 650-657 (2004).

    Article  ADS  Google Scholar 

  14. J. Juergens and G. Adamovsky, Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures, NASA Report NASA/TM—2004-212888 (NASA, Glenn Research Center, 2004).

    Google Scholar 

  15. A.I. Gusarov, D.B. Doyle, N. Karafolas and F. Berghmans, Fiber Bragg gratings as a candidate technology for satellite optical communication payloads: radiation-induced spectral effects, SPIE Proceedings 4134, 253-260 (2000).

    Article  ADS  Google Scholar 

  16. M. Ott and P. Friedberg, Technology Validation of Optical Fiber Cables for Space Flight Environments, SPIE Proceedings 4216, 206-217 (2001).

    Article  ADS  Google Scholar 

  17. M. Ott, Fiber Laser Components, Technology Readiness Overview, NASA Electronic Parts and Packaging Program, Electronic Parts Project Report (NASA, 2003).

    Google Scholar 

  18. Photonics for Space Environments, SPIE Proceedings 1953, edited by E.W. Taylor (1993).

    Google Scholar 

  19. Photonics for Space Environments II, SPIE Proceedings 2215, edited by E.W. Taylor (1994).

    Google Scholar 

  20. Photonics for Space Environments III, SPIE Proceedings 2482, edited by E.W. Taylor (1995).

    Google Scholar 

  21. Photonics for Space Environments IV, SPIE Proceedings 2811, edited by E.W. Taylor (1996).

    Google Scholar 

  22. Photonics for Space Environments V, SPIE Proceedings 3124, edited by E.W. Taylor (1997).

    Google Scholar 

  23. Photonics for Space Environments VI, SPIE Proceedings 3440, edited by E.W. Taylor (1998).

    Google Scholar 

  24. Photonics for Space and Radiation Environments, SPIE Proceedings 3872, edited by E.W. Taylor and F. Berghmans (1999).

    Google Scholar 

  25. Photonics for Space Environments VII, SPIE Proceedings 4134, edited by E.W. Taylor (2000).

    Google Scholar 

  26. Photonics for Space and Radiation Environments II, SPIE Proceedings 4547, edited by E.W. Taylor and F. Berghmans (2001).

    Google Scholar 

  27. Photonics for Space Environments VIII, SPIE Proceedings 4823, edited by E.W. Taylor (2002).

    Google Scholar 

  28. Photonics for Space Environments IX, SPIE Proceedings 5554, edited by E.W. Taylor (2004).

    Google Scholar 

  29. Photonics for Space Environments X, SPIE Proceedings 5897, edited by E.W. Taylor (2005).

    Google Scholar 

  30. Photonics for Space Environments XI, SPIE Proceedings 6308, edited by E.W. Taylor (2006).

    Google Scholar 

  31. H. Henschel, M. Körfer, J. Kuhnhenn, U. Weinand and F. Wulf, Fibre optic radiation sensor systems for particle accelerators, Nuclear Instruments and Methods in Physics Research Section A 526, 537-550 (2004).

    Article  ADS  Google Scholar 

  32. CMS Outreach (February 2007); http://cmsinfo.cern.ch/outreach/

  33. The ATLAS Experiment (February 2007); http://atlas.ch/

  34. D. Inaudi, B. Glisic, S. Fakra, J. Billan, S. Redaelli, J.G. Perez and W. Scandale, Development of a displacement sensor for the CERN-LHC superconducting cryodipoles, Measurement Science and Technology 12, 887-896 (2001).

    Article  ADS  Google Scholar 

  35. Optical links for CMS (February 2007); http://cms-tk-opto.web.cern.ch/

  36. R. Macias, M. Axer, S. Dris, K. Gill, R. Grabit, E. Noah, J. Troska and F. Vasey, Advance validation of radiation hardness and reliability of lasers for CMS optical links, IEEE Transactions on Nuclear Science 52, 1488-1496 (2005).

    Article  ADS  Google Scholar 

  37. K. Gill, in: Conférence RADECS 2005, Short Course Notebook - New challenges for Radiation Tolerance Assessment, edited by A. Fernandez Fernandez (Cap d’Agde, 2005), 173-219.

    Google Scholar 

  38. ITER (February 2007); http://www.iter.org

  39. Laser Mégajoule (February 2007); http://www-lmj.cea.fr/html/cea.htm

  40. C. Ingesson and J. Palmer, in: Conférence RADECS 2005, Short Course Notebook New challenges for Radiation Tolerance Assessment, edited by A. Fernandez Fernandez (Cap d’Agde, 2005), 139-150.

    Google Scholar 

  41. J.L. Bourgade, V. Allouche, J. Baggio, C. Bayer, F. Bonneau, C. Chollet, S. Darbon, L. Disdier, D. Gontier, M. Houry, H.P. Jacquet, J.P. Jadaud, J.L. Leray, I. Masclet-Gobin, J.P. Negre, J. Raimbourg, B. Villette, I. Bertron, J.M. Chevalier, J.M. Favier, J. Gazave, J.C. Gomme, F. Malaise, J.P. Seaux, V. Yu Glebov, P. Jaanimagi, C. Stoeckl, T.C. Sangster, G. Pien, R.A. Lerche and E.R. Hodgson, New constraints for plasma diagnostics development due to the harsh environment of MJ class lasers, Review of Scientific Instruments 75, 4204-4212 (2004).

    Article  ADS  Google Scholar 

  42. Optical fibre sensing and systems in nuclear environments, SPIE Proceedings 2425, edited by F. Berghmans and M. Decréton (1994).

    Google Scholar 

  43. E. Morange, Capteurs à fibres optiques et réseaux associés, Technical Note ENM/EL 92.94 (Electricité de France, 1992).

    Google Scholar 

  44. P. Ferdinand, S. Magne, V. Marty, S. Rougeault, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, P. Niay, J.F. Bayon, T. Georges and M. Monerie, Optical fibre Bragg grating sensors for structure monitoring within the nuclear power plants, SPIE Proceedings 2425, 11-20 (1994).

    Article  ADS  Google Scholar 

  45. J.W. Berthold III, Overview of prototype fiber optic sensors for future application in nuclear environments, SPIE Proceedings 2425, 74-83 (1994).

    Article  ADS  Google Scholar 

  46. A.F. Fernandez, A.I. Gusarov, B. Brichard, S. Bodart, K. Lammens, F. Berghmans, M.C. Decreton, P. Megret, M. Blondel and A. Delchambre, Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors, Optical Engineering 41, 1246-1254 (2002).

    Article  ADS  Google Scholar 

  47. A. Kimura, E. takada, K. Fujita, M. Nakazawa, H. Takahashi and S. Ichige, Application of a Raman distributed temperature sensor to the experimental fast reactor joyo with correction techniques, Measurement Science and Technology 12, 966-973 (2001).

    ADS  Google Scholar 

  48. M. Van Uffelen, F. Berghmans, B. Brichard, P. Borgermans and M.C. Decreton, Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers, SPIE Proceedings 4823, 231-221 (2002).

    Google Scholar 

  49. T. Kakuta and H. Yaqi, Irradiation tests of electronic components and materials, 3rd International Workshop on Future Electron Devices, RDA/FED, Tokyo, 1986.

    Google Scholar 

  50. A. Homes-Siedle, Radiation effects in space, nuclear power and accelerators : impact on optics and light sensors, SPIE Critical Reviews of Optical Science and Technology CR66, 37-57 (1997).

    Google Scholar 

  51. A. Fernandez Fernandez, B. Brichard, and F. Berghmans, Irradiation facilities at SCK·CEN for radiation tolerance assessment of space materials, Proceedings ESA symposium materials in a space environment SP-540 (ESA, 2003).

    Google Scholar 

  52. Irradiation of electronic components at Louvain la Neuve (February 2007); http://www.cyc.ucl.ac.be/

  53. Radiation effects facility RADEF (February 2007); http://www.phys.jyu.fi/RADEF/main.html

  54. ESA/SCC Basic Specification No. 22900 Issue 4, Total dose steady-state irradiation test method (ESA, 1995).

    Google Scholar 

  55. TIA-455-64 FOTP-64 Procedure for Measuring Radiation-Induced Attenuation in Optical Fibers and Optical Cables (TIA, 1998).

    Google Scholar 

  56. IEC 60793-1-54 Ed 1.0: Optical Fibres - Part 1-54: Measurement methods and test procedures - Gamma irradiation (IEC, 2003).

    Google Scholar 

  57. MIL-STD-883E Test method standard - Microcircuits (USA Department of Defense, 1996)

    Google Scholar 

  58. E.W. Taylor, Advancement of radiation effects research in photonic technologies: application to space platforms and systems, SPIE Critical Reviews of Optical Science and Technology CR66, 58-92 (1997).

    Google Scholar 

  59. F. Berghmans, O. Deparis, S. Coenen, M. Decréton and P. Jucker, in: Trends in Optical Fibre Metrology and Standards, edited by O.D.D. Soares, NATO ASI Series E: Applied Sciences 285, 131-156 (1995).

    Google Scholar 

  60. H. Henschel, Radiation hardness of present optical fibres, SPIE Proceedings 2425, 21-31 (1994).

    Article  ADS  Google Scholar 

  61. R.T. Williams and E.J. Friebele, in: CRC Handbook of laser science and technology III - Optical Materials, edited by M.J. Weber (CRC press Inc., 1986), pp. 299-499.

    Google Scholar 

  62. B. Brichard and A. Fernandez Fernandez, in: Conférence RADECS 2005, Short Course Notebook - New challenges for Radiation Tolerance Assessment, edited by A. Fernandez Fernandez (Cap d’Agde, 2005), pp. 95-137.

    Google Scholar 

  63. M.N. Ott, Radiation Effects Data on Commercially Available Optical Fiber: Database Summary, 2002 IEEE Radiation Effects Data Workshop, Workshop Record, 24-31 (IEEE, 2002).

    Google Scholar 

  64. D.L. Griscom, M.E. Gingerich and E.J. Friebele, Radiation induced defects in glasses: origin of power-law dependence of concentration on dose, Physical Review Letters 71, 1019-1022 (1993).

    Article  ADS  Google Scholar 

  65. E.J. Friebele, C.G. Askins, C.M. Shaw, M.E. Gingerich, C.C. Harrington, D.L. Griscom, T.E. Tsai, U.C. Paek and W.H. Schmidt, Correlation of single-mode fibre radiation response and fabrication parameters, Applied Optics 30, 1944-1957 (1991).

    Article  ADS  Google Scholar 

  66. D.L. Griscom, Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers, Physical Review B 64, 174201 (2001).

    Article  ADS  Google Scholar 

  67. Y. Morita and W. Kawakami, Dose rate effects on radiation induced attenuation of pure silica core optical fibers, IEEE Transactions on Nuclear Science 36, 584-590 (1989).

    Article  ADS  Google Scholar 

  68. P. Borgermans and B. Brichard, Kinetic Models and Spectral Dependencies of the Radiation-Induced Attenuation in Pure Silica Fibers, IEEE Transactions on Nuclear Science 49, 1439-1445 (2002).

    Article  ADS  Google Scholar 

  69. M.J. LuValle, E.J. Friebele, F.V. Dimarcello, G.A. Miller, E.M. Monberg, L.R. Wasserman, P.W. Wisk, M.F. Yan and E.M. Birtch, Radiation-Induced Loss Predictions for Pure Silica Core, Polarization-Maintaining Fibers, SPIE Proceedings 6193, 61930J (2006).

    Google Scholar 

  70. A. Fernandez Fernandez, B. Brichard, Member and F. Berghmans, In Situ Measurement of Refractive Index Changes Induced by Gamma Radiation in Germanosilicate Fibers, IEEE Photonics Technology Letters 15, 1428-1430 (2003).

    Article  ADS  Google Scholar 

  71. W.N. MacPherson, R.R.J. Maier, J.S. Barton, J.D.C. Jones, A. Fernandez Fernandez, B. Brichard, F. Berghmans, J.C. Knight, P.S. Russel and L. Farr, Dispersion and refractive index measurement for Ge, B-Ge doped and photonic crystal fibre following irradiation at MGy levels, Measurement Science and Technology 15, 1659-1664 (2004).

    Article  ADS  Google Scholar 

  72. D.L. Griscom, Optical Properties and Structure of Defects in Silica Glass, Jounal of the Ceramic Society of Japan 99, 899-916 (1991).

    Google Scholar 

  73. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa and Y. Hama, Various types of nonbridging oxygen hole center in high-purity silica glass, Journal of Applied Physics 68, 1212-1217 (1990).

    Article  ADS  Google Scholar 

  74. L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano and H. Hosono, Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping, Journal of Non-Crystalline Solids 345 & 346, 328-331 (2004).

    Article  Google Scholar 

  75. K. Nagasawa, Y. Hoshi, Y. Ohki and K. Yahagi, Improvement of radiation resistance of pure silica core fibers by hydrogen treatment, Japanese Journal of Applied Physics 24, 1224-1228 (1985).

    Article  ADS  Google Scholar 

  76. B. Brichard, A. Fernandez Fernandez, H. Ooms, F. Berghmans, M. Decréton, A. Tomashuk, S. Klyamkin, M. Zabezhailov, I. Nikolin, V. Bogatyrjov, E. Hodgson, T. Kakuta, T. Shikama, T. Nishitani, A. Costley and G. Vayakis, Radiation-Hardening Techniques Of Dedicated Optical Fibers Used In Plasma Diagnostic Systems In ITER, Journal of Nuclear Materials, 329-333, 1456-1460 (2004).

    Article  ADS  Google Scholar 

  77. D.L. Griscom, Self-trapped holes in amorphous silicon dioxide, Physical Review B 40, 4224-4227 (1989).

    Article  ADS  Google Scholar 

  78. D.L. Griscom, Radiation hardening of pure-silica-core optical fibers: reduction of induced absorption bands associated with self-trapped holes, Applied Physics Letters 71, 175-177 (1997).

    Article  ADS  Google Scholar 

  79. B. Brichard, P. Borgermans, A. Fernandez Fernandez, K. Lammens and M. Decréton, Radiation Effect in Silica Optical Fibre exposed to intense mixed neutron-gamma radiation field, IEEE Transactions on Nuclear Science 48, 2069-2073 (2001).

    Article  ADS  Google Scholar 

  80. B. Brichard, A. Fernandez Fernandez, F. Berghmans and M. Decréton, Origin of the radiation-induced OH vibration band in polymer-coated optical fibres irradiated in a nuclear fission reactor, IEEE Transactions on Nuclear Science 49, 2852-2856 (2002).

    Article  ADS  Google Scholar 

  81. D.L. Griscom, M.E. Gingerich, and J.E. Friebele, Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fiber, IEEE Transactions on Nuclear Science 41, 523-527 (1994).

    Article  ADS  Google Scholar 

  82. J.E. Golob, P.B. Lyons and L.D. Looney, Transient radiation effects in low-loss optical waveguides, IEEE Transactions on Nuclear Science 24, 2164-2168 (1977).

    Article  ADS  Google Scholar 

  83. L.D. Looney, and P.B. Lyons, Radiation-induced transient absorption in single mode optical fibers, SPIE Proceedings 992, 84-91 (1988).

    Google Scholar 

  84. E.J. Friebele, P.B. Lyons, J. Blackburn, H. Henschel, E.W. Taylor, G.T. Beauregard, R. H. West, P. Zagarino, and D. Smith, Interlaboratory comparison of radiation-induced attenuation in optical fibers: part III: transient exposures, IEEE Journal of Lightwave Technology 8, 977-989 (1990).

    Article  Google Scholar 

  85. S. Girard, J. Baggio, J-L. Leray, J-P. Meunier, A. Boukenter, and Y. Ouerdane, Vulnerability analysis of optical fibers for Laser Megajoule facility: preliminary studies, IEEE Transactions on Nuclear Science 52, 1497-1503 (2005).

    Article  ADS  Google Scholar 

  86. S. Girard, J. Keurinck, Y. Ouerdane, J-P. Meunier, and A. Boukenter, Gamma-rays and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers: influence of cladding codopants, IEEE Journal of Lightwave Technology 22, 1915-1922 (2004).

    Article  Google Scholar 

  87. L.D. Looney, P.B. Lyons, W. Schneider, and H. Henschel, Influence of preform variations and drawing conditions on transient radiation effects in pure silica fibers, SPIE Proceedings 721, 37-43 (1986).

    Google Scholar 

  88. S. Girard, Y. Ouerdane, A. Boukenter, and J-P. Meunier, Transient radiation responses of silica-based optical fibers: influence of modified chemical-vapor deposition process parameters, Journal of Applied Physics 99, 0231041-5 (2006).

    Article  Google Scholar 

  89. S. Girard, D.L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: influence of selftrapped holes, Journal of Non-Crystalline Solids 352, 2637-2642 (2006).

    Article  ADS  Google Scholar 

  90. K. Tanimura, C. Itoh, and N. Itoh, Transient optical absorption and luminescence induced by band-to-band excitation in amorphous SiO2, Journal of Physics C Solid State Physics 21, 1869-1876 (1988).

    Article  ADS  Google Scholar 

  91. S. Girard, A. Yahia, A. Boukenter, Y. Ouerdane, J.-P. Meunier, R.E. Kristiaensen and G. Vienne, g-radiation induced attenuation in photonic crystal fibre, Electronics Letters 38, 1169-1170 (2002).

    Article  Google Scholar 

  92. A.F. Kosolapov, S.L. Semjonov and A.L. Tomashuk, Improvement of radiation resistance of multimode silica-core holey fibers, SPIE Proceedings 6193, 61931E (2006).

    Article  ADS  Google Scholar 

  93. S. Girard, J. Baggio, and J.-L. Leray, Radiation-Induced Effects in a New Class of Optical Waveguides: The Air-Guiding Photonic Crystal Fibers, IEEE Transactions on Nuclear Science 52, 2683-2688 (2005).

    Article  ADS  Google Scholar 

  94. H. Henschel, J. Kuhnhenn and U. Weinand, High radiation hardness of a hollow core photonic bandgap fiber, RADECS 2005 Conference Proceedings LN4 (2005).

    Google Scholar 

  95. G. Messenger and J. Spratt, The effect of neutron irradiation on silicon and germanium, Proceedings of the Institute of Radio Engineers 46, 1038-1044 (1958).

    Google Scholar 

  96. B.H. Rose and C. Barnes, Proton damage effects on light emitting diodes, Journal of Applied Physics 53, 1772-1780 (1982).

    Article  ADS  Google Scholar 

  97. A.H. Johnston, Radiation Effects in Light-Emitting and Laser Diodes, IEEE Transactions on Nuclear Science 50, 689-703 (2003).

    Article  ADS  Google Scholar 

  98. P. Le Metayer, O. Gilard, R. Germanicus, D. Campillo, F. Ledu, J. Cazes, W. Falo and C. Chatry, Proton damage effects on GaAs/GaAlAs veritcal cavity surface emitting lasers, Journal of Applied Physics 94, 7757-7763 (2003).

    Article  ADS  Google Scholar 

  99. Y.F. Zhao, A.R. Patwary, R.D. Shrimpf, M.A. Netfeld and K.F. Galloway, 200 MeV proton damage effects on multi-quantum well laser diodes, IEEE Transactions on Nuclear Science 44, 1898-1905 (1997).

    Article  ADS  Google Scholar 

  100. R. Macias, M. Axer, S. Dris, K. Gill, R. Grabit, E. Noah, J. Troska, and F. Vasey, Advance validation of radiation hardness and reliability of lasers for CMS optical links, IEEE Transactions on Nuclear Science 52, 1488-1496 (2005).

    Article  ADS  Google Scholar 

  101. F. Berghmans, M. Van Uffelen and M. Decréton, High total dose gamma and neutron radiation tolerance of VCSEL assemblies, SPIE Proceedings 4823, 162-171 (2002).

    Article  ADS  Google Scholar 

  102. M. Van Uffelen, J. Mols, F. Berghmans, Ionizing radiation assessment of longwavelength VCSELs up to MGy dose levels, RADECS 2006 Workshop Proceedings, PG-1 (2006).

    Google Scholar 

  103. A. Kalavagunta, B. Choi, M.A. Neifeld and R. Shrimpf, Effects of 2 MeV proton irradiation on operating wavelength and leakage current of vertical cavity surface emitting lasers, IEEE Transactions on Nuclear Science 50, 1982-1990 (2003).

    Article  ADS  Google Scholar 

  104. J. Troska, K. Gill, R. Grabit and F. Vasey, Neutron, proton and gamma radiation effects in candidate InGaAs p-i-n photodiodes for the CMS tracker optical links, Tech. Rep. No. CMS-NOTE-1997-102 (CERN, 1997).

    Google Scholar 

  105. S. Onoda, Spectral response of a gamma and electron irradiated pin photodiode, IEEE Transactions on Nuclear Science 49 1446-1449 (2002).

    Article  ADS  Google Scholar 

  106. K. Gill, M. Axer, S. Dris, R. Grabit, R. Macias, E. Noah, J. Troska, and F. Vasey, Radiation Hardness Assurance and Reliability Testing of InGaAs Photodiodes for Optical Control Links for the CMS Experiment, IEEE Transactions on Nuclear Science 52, 1480-1487 (2005).

    Article  ADS  Google Scholar 

  107. M. Van Uffelen, I. Genchev and F. Berghmans, Reliability study of photodiodes for their potential use in future fusion reactor environments, SPIE Proceedings 5465, 92-102 (2004).

    Article  ADS  Google Scholar 

  108. F. Berghmans, F. Vos and M. Decréton, Evaluation of three different optical fibre temperature sensor types for application in gamma-radiation environment, IEEE Transactions on Nuclear Science 45, 1537-1542 (1998).

    Article  ADS  Google Scholar 

  109. K. Krebber, H. Henschel and U. Weinand, Fibre Bragg gratings as high dose radiation sensors?, SPIE Proceedings 5855, 176-179 (2005).

    Article  ADS  Google Scholar 

  110. P. Niay, P. Bernage, M. Douay, F. Lahoreau, J. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault and P. Cetier, Behaviour of Bragg gratings, written in germanosilicate fibers, against γ-ray exposure at low dose rate, IEEE Photonics Technology Letters 6, 1350-1352 (1994).

    Article  ADS  Google Scholar 

  111. S.A. Vasiliev, E.M. Dianov, K.M. Golant, O.I. Medvedkov, A.L. Tomashuk, V.I. Karpov, M.V. Grecov, A.S. Kurkov, B. Leconte, et al., Performance of Bragg and longperiod gratings written in N- and Ge-doped silica fibers under γ-radiation, IEEE Transactions on Nuclear Science 45, 1580-1583 (1998).

    Article  ADS  Google Scholar 

  112. A.I. Gusarov, F. Berghmans, O. Deparis, A. Fernandez Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, High total dose radiation effects on temperature sensing fibre Bragg gratings, IEEE Photonics Technology Letters 11, 1159-1161 (1999).

    Article  ADS  Google Scholar 

  113. A.I. Gusarov, F. Berghmans, A. Fernandez Fernandez, O. Deparis, Y. Defosse, D. Starodubov, P. Mégret, M. Décreton, and M. Blondel, Behaviour of fibre Bragg gratings under high total dose gamma radiation, IEEE Transactions on Nuclear Science 47, 688-692 (2000).

    Article  ADS  Google Scholar 

  114. A.I. Gusarov, A. Fernandez Fernandez, F. Berghmans, S.A. Vasiliev, O. Medvedkov, M. Decréton, O. Deparis, P. Mégret and M. Blondel, Effect of combined gammaneutron radiation of multiplexed fiber Bragg grating sensors, SPIE Proceedings 4134, 86-95 (2000).

    Article  ADS  Google Scholar 

  115. T.-E. Tsai, G.M. Williams and E.J. Friebele, Index structure of fiber Bragg gratings in Ge-SiO2 fibers, Optics Letters 22, 224-226 (1997).

    Article  ADS  Google Scholar 

  116. A. Fernandez Fernandez, B. Brichard, F. Berghmans, and M. Decréton, Dose-rate dependencies in gamma-irradiated Fiber Bragg grating filters, IEEE Transactions on Nuclear Science 46, 2874-2878 (2002).

    Article  ADS  Google Scholar 

  117. E.W. Taylor, K. Hulick, J.M. Battiato, A.D. Sanchez, J.E. Winter and A. Pirich, Response of germania doped fiber Bragg gratings in radiation environments, SPIE Proceedings 3714, 106-113 (1999).

    Article  ADS  Google Scholar 

  118. A. Fernandez Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret and A. Delchambre, Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor, Measurement Science and Technology 15, 1506-1511 (2004).

    Article  ADS  Google Scholar 

  119. S.A. McElhaney, D.D. Falter, R.A. Todd, M.L. Simpson, J.T. Mihalczo, Passive (selfpowered) fiber optic sensors, Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference 1, 101-103 (1992).

    Google Scholar 

  120. C. Lai, W. Lee and W. Wang, Gamma Radiation Effect on the Fiber Fabry-Pérot Interference Sensor, IEEE Photonics Technology Letters 15, 1132-1134 (2003).

    Article  ADS  Google Scholar 

  121. A. Fernandez Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A. H. Hartog, P. Hughes, K. Williams and A.P. Leach, Radiation-Tolerant Raman Distributed Temperature Monitoring System for Large Nuclear Infrastructures, IEEE Transactions on Nuclear Science 52, 2689-2694 (2005).

    Article  ADS  Google Scholar 

  122. D. Alasia, A. Fernandez Fernandez, L. Abrardi, B. Brichard and L. Thévenaz, The effects of gamma-radiation on the properties of Brillouin scattering in standard Gedoped optical fibres, Measurement Science and Technology 17, 1091-1094 (2006).

    Article  ADS  Google Scholar 

  123. H. Bueker, F.W. Haesing, and E. Gerhard, Physical properties and concepts for applications of attenuation-based fiber optic dosimeters for medical instrumentation, SPIE Proceedings 1648, 63-70 (1992).

    Article  ADS  Google Scholar 

  124. M.C. Decréton, V. Massaut and P. Borgermans, Potential benefit of fibre optics in nuclear applications - the case of decommissioning and storage activities, SPIE Proceedings 2425, 2-10 (1994).

    Article  ADS  Google Scholar 

  125. B. Brichard, P. Borgermans, F. Berghmans, M. Decréton, A.L. Tomashuk, I.V. Nikolin, R.R. Khrapko and K.M Golant, Dedicated optical fibres for dosimetry based on radiation-induced attenuation : experimental results, SPIE Proceedings 3872, 36-42 (1992).

    Article  Google Scholar 

  126. A. Fernandez Fernandez, S. O’Keeffe, C. Fitzpatrick, B. Brichard, F. Berghmans and E. Lewis, Gamma dosimetry using commercial PMMA optical fibres for nuclear environments, SPIE Proceedings 5855, 499-502 (2005).

    Article  ADS  Google Scholar 

  127. L. Dusseau and J. Gasiot, Online and realtime dosimetry using optically stimulated luminescence, International Journal of High Speed Electronics and Systems 14, 605-623 (2004).

    Article  Google Scholar 

  128. A.L. Huston, B.L. Justus, P.L. Falkenstein, R.W. Miller, H. Ning and R. Altemus, Remote optical fiber dosimetry, Nuclear Instruments and Methods in Physics Research B 184, 55-67 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this paper

Cite this paper

Berghmans, F., Brichard, B., Fernandez, A.F., Gusarov, A., Uffelen, M.V., Girard, S. (2008). An Introduction to Radiation Effects on Optical Components and Fiber Optic Sensors. In: Bock, W.J., Gannot, I., Tanev, S. (eds) Optical Waveguide Sensing and Imaging. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6952-9_6

Download citation

Publish with us

Policies and ethics