Advertisement

A Finite-Difference Time-Domain Model of Optical Phase Contrast Microscope Imaging

  • Stoyan Tanev
  • James Pond
  • Paul Paddon
  • Valery V. Tuchin
Part of the NATO Science for Peace and Security Series book series (NAPSB)

The Finite-Difference Time-Domain (FDTD) modeling technique is applied to build a simple simulation equivalent of an optical phase contrast microscope. The model is validated by demonstrating the effect of optical immersion on the optical phase contrast microscope image of a simple biological cell containing a cytoplasm, a nucleus and a membrane. To the best of our knowledge, this is the first study using the FDTD approach to construct optical phase contrast microscope images. The results demonstrate the potential of the FDTD modelling approach and extend its area of applicability a new biomedical research area.

Keywords

Biological cell finite-difference time-domain method optical phase contrast microscope optical clearing effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Prasad, “Bioimaging: principles and techniques”, Chap. 7 in Introduction to Biophotonics, pp. 203-249, John Wiley & Sons, New Jersey (2003).CrossRefGoogle Scholar
  2. 2.
    V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second edition, PM 166, Bellingham, WA, USA, 2007.Google Scholar
  3. 3.
    F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” Journal of Quantitative Spectroscopy and Radiative Transfer 73, 775-824 (2003).CrossRefADSGoogle Scholar
  4. 4.
    R. Drezek, A. Dunn and R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Optics Express 6, 147-157 (2000).CrossRefADSGoogle Scholar
  5. 5.
    T. Tanifuji and M. Hijikata, “Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography,” IEEE Transactions on Medical Imaging 21, 181-184 (2002).CrossRefGoogle Scholar
  6. 6.
    R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” Journal of Biomedical Optics 8, 7-16 (2003).CrossRefADSGoogle Scholar
  7. 7.
    S. Tanev, V. V. Tuchin and P. Paddon, “Light scattering effects of gold nanoparticles in cells,” Laser Physics Letters, Vol. 3, No. 12, 594-598 (2006).CrossRefADSGoogle Scholar
  8. 8.
    S. Tanev, V. V. Tuchin and P. Paddon, “Cell membrane and gold nanoparticles effects on optical immersion experiments with noncancerous and cancerous cells: finite-difference time-domain modeling”, Journal of Biomedical Optics, Vol. 11, No. 6, 064037 (2006).CrossRefADSGoogle Scholar
  9. 9.
    X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reducedorder modeling of light-scattering properties of complex structures,” IEEE J. Selected Topics in Quantum Electronics 11, 759-765 (2005).CrossRefGoogle Scholar
  10. 10.
    R. Barer, K. F. A. Ross, and S. Tkaczyk, Refractometry of living cells, Nature 171 (1953), pp. 720-724.CrossRefADSGoogle Scholar
  11. 11.
    B. A. Fikhman, Microbiological Refractometry, Medicine, Moscow (1967).Google Scholar
  12. 12.
    V. V. Tuchin, Optical Clearing of Tissues and Blood, Vol. PM 154, SPIE Press, 2005.Google Scholar
  13. 13.
    W. Sun, N. G. Loeb, S. Tanev, and G. Videen, “Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium,” Applied Optics 44, 1977-1983 (2005).CrossRefADSGoogle Scholar
  14. 14.
    A. Taflove and S. Hagness, Computational Electrodynamics: The FiniteDifference Time Domain Method, Artech House Publishers (3rd edition), Boston (2005).Google Scholar
  15. 15.
    The simulations were performed by the FDTD Solutions™ software developed by Lumerical Solutions Inc., Vancouver, BC, Canada: www.lumerical.com

Copyright information

© Springer Science+Business Media, B.V 2008

Authors and Affiliations

  • Stoyan Tanev
    • 1
  • James Pond
    • 2
  • Paul Paddon
    • 2
  • Valery V. Tuchin
    • 3
  1. 1.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada
  2. 2.Lumerical Solutions, Inc.VancouverCanada
  3. 3.Institute of Optics and BiophotonicsSaratov State UniversityRussia

Personalised recommendations