Preliminary Concepts and Analysis of Future Earth Observation Missions Based on Distributed Radars

  • Marco D’Errico
  • Giancarmine Fasano

Abstract

Spaceborne synthetic aperture radars can gain great advantage from the concepts of formations and distributed space systems. In fact, combination of signals from multiple coherent receivers allows to overcome intrinsic performance limitations of monolithic SAR systems. This paper deals with an overview of recent advances and ideas in the field of distributed sparse filled aperture radar concepts and required signal processing. Then, preliminary system considerations are given and a preliminary conceptual analysis of a distributed P-band SAR is presented. At low frequency distributed SARs offer greater advantages in overcoming the minimum area constraint (order of several tens of meters) and reduce the impact on formation control feasibility (requirement depends on λ). A formation of 6 cooperating satellites carrying a 2 xm x 2 m antenna operating at an undersampling pulse repetition frequency of 1000 Hz would allow to achieve 1 m azimuth resolution (ionospheric effect not included) over the whole range swaths.

Keywords

Biomass Microwave Radar Luminated Azimuth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Duren and O.P. Lay, The Starlight Formation-Flying Interferometer System and Architecture. Proc. of the IEEE Aerospace Conf., Vol. 4, pp. 1703–1719, Big Sky (2002).Google Scholar
  2. 2.
    G. Fasano and M. D’Errico, Gathering SAR Data Under Different Bistatic Angles: A New Potential of COSMO/SkyMed Constellation. Proc. of 5th IAA Symp. on Small Sat. for Earth Obs., Berlin (2005).Google Scholar
  3. 3.
    A. Moreira, G. Krieger, I. Hajnsek, S. Riegger, and E. Settelmeyer, TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry. Proc. of IGARSS, pp. 1000–1003 (2004).Google Scholar
  4. 4.
    G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Zink, and M. Werner, TanDEM-X: Mission Concept, Product Definition and Performance Prediction. Proc. of EUSAR, pp. 4, Dresden (2006).Google Scholar
  5. 5.
    H.A. Zebker, T.G. Farr, R.P. Salazar, and T.H. Dixon, Mapping the World’s Topography Using Radar Interferometry: The TOPSAT Mission, Proc. of the IEEE, 82 (12), 1774–1786 (1994).CrossRefGoogle Scholar
  6. 6.
    M. D’Errico, A. Moccia, and S. Vetrella, Attitude Requirements of a Twin Satellite System for the Global Topography Mission, 45th IAF Congress, IAF-94-B.2.077, Jerusalem (1994).Google Scholar
  7. 7.
    M. D’Errico, M. Grassi, and S. Vetrella, A Bistatic SAR Mission for Earth Observation Based on a Small Satellite. Acta Astronaut., Vol. 39, No. 9–12, pp. 837–846 (1997).Google Scholar
  8. 8.
    M. D’Errico and A. Moccia, Attitude and Antenna Pointing Design of Bistatic Radar Formations. IEEE TAES, Vol. 39, No. 3, pp. 949–960 (2003).Google Scholar
  9. 9.
    A. Moccia, G. Salzillo, M. D’Errico, G. Rufino, and G. Alberti, Performance of Spaceborne Bistatic Synthetic Aperture Radar. IEEE TAES, Vol. 41, No. 4, pp. 1383–1395 (2005).Google Scholar
  10. 10.
    D. Massonnet, The Interferometric Cartwheel: A Constellation of Passive Satellites to Produce Radar Image to be Coherently Combined. Int. J. of Remote Sensing, Vol. 22, No. 12,pp. 2413–2430 (2001).CrossRefGoogle Scholar
  11. 11.
    D. Massonnet, Capabilities and Limitations of the Interferometric Cartwheel. IEEE TGRS, Vol. 39, No. 3, pp. 507–520 (2001).Google Scholar
  12. 12.
    R. Burns, C.A. McLaughlin, J. Leitner, and M. Martin,. TechSat21: Formation Design, Control, and Simulation. Proc. of IEEE Aerospace Conf., pp. 19–25, Big Sky (2000).Google Scholar
  13. 13.
    Chien et al., The Techsat-21 Autonomous Sciencecraft Constellation. Proc. of the 6th Int. Symp. on Artificial Intelligence and Robotics & Automation in Space, p. 8, St-Hubert, Canada, (2001).Google Scholar
  14. 14.
    H. Steyskal, J.K. Schindler, P. Franchi, R.J. Mailloux, Pattern Synthesis for TechSat21 – A Distributed Space-Based Radar System. Proc. of IEEE Aerospace Conf., pp. 725–732, Big Sky (2001).Google Scholar
  15. 15.
    H. Steyskal and J.K. Schindler, Separable Space-Time Patter Synthesis for the TechSat21 Space-Based Radar System. IEEE Aerospace Conf., p. 6, Big Sky, (2003).Google Scholar
  16. 16.
    I. Bekey, Advanced Space System Concepts and Technologies – 2010–2030$+$. AIAA (2003).Google Scholar
  17. 17.
    T.A. Pauls, Origins of Sparse Aperture Imaging. Proc. of IEEE Aerospace Conf., Vol. 3,pp. 1421–1427, Big Sky (2002).Google Scholar
  18. 18.
    N.A. Goodman and J.M. Stiles, Resolution and Synthetic Aperture Characterization of Sparse Radar Arrays. IEEE TAES, Vol. 39, No. 3, pp. 921–935 (2003).Google Scholar
  19. 19.
    A. Freeman, W.T.K. Johnson, B. Huneycutt, R. Jordan, S. Hensley, P. Siqueira, and J. Curlander, The “Myth” of the Minimum SAR Antenna Area Constraint. IEEE Trans. Geosc. Rem Sens., 38, 320–324 (2000).CrossRefGoogle Scholar
  20. 20.
    A. Currie and M.A. Brown, Wide-swath SAR. IEE Proc-F, 139, 122–135 (1992).Google Scholar
  21. 21.
    G.D. Callaghan and I.D. Longstaff, Wide-swath space-borne SAR using a quad-element array. IEE Proc. Radar, Sonar Navig., 146, 159–165 (1999).CrossRefGoogle Scholar
  22. 22.
    N.A. Goodman, S.C. Lin, D. Rajakrishna, and J.M. Stiles, Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR. IEEE TGRS, Vol. 40, No. 4, pp. 841–852 (2002).Google Scholar
  23. 23.
    N.A. Goodman and J.M. Stiles, Radar Satellite Constellations: SAR Characterization and Analysis. Proc. of the Advanced SAR Workshop, Montreal, Canada, June, p. 10 (2003).Google Scholar
  24. 24.
    J.M. Stiles and N.A. Goodman, Wide Area, Fine Resolution SAR From Multi-Aperture Radar Arrays. Proc. of the Advanced SAR Workshop, Montreal, Canada, June, p. 10 (2003).Google Scholar
  25. 25.
    J.R. Raman, J.C. Nelander, J.W. Garnham, J.D. Keisling, and L.M. Black, Suppression of Doppler Ambiguities for Linear Sparse Arrays. Proc. of IEEE Radar Conf., 650–656 (2006).Google Scholar
  26. 26.
    R. Marechal, T. Amiot, S. Attia, J.P. Aguttes, and J.C Souyris, Distributed SAR for Performance Improvement. Proc. of IGARSS, pp. 1030–1033 (2004).Google Scholar
  27. 27.
    J.P. Aguttes, The SAR Train Concept: An Along-Track Formation of SAR Satellites for Diluting the Antenna Area Over N Smaller Satellites, While Increasing Performance by N. Acta Astronautica, Vol. 57, pp. 197–204 (2005).CrossRefGoogle Scholar
  28. 28.
    Z. Li, H. Wang, T. Su, and Z. Bao, Generation of Wide-Swath and High-Resolution SAR Images From Multichannel Small Spaceborne SAR Systems. IEEE GRSL, Vol. 2, No. 1,pp. 82–86 (2005).Google Scholar
  29. 29.
    Z. Li, Z. Bao, H. Wang, and G. Liao, Performance Improvement for Constellation SAR Using Signal Processing Techniques. IEEE TAES, Vol. 42, No. 2, pp. 436–452 (2006).Google Scholar
  30. 30.
    N. Gebert, G. Krieger, and A. Moreira, High Resolution Wide Swath SAR Imaging with Digital Beamforming – Performance Analysis, Optimization, System Design. Proc. of EUSAR (2006).Google Scholar
  31. 31.
    C. Le, S. Chan, F. Cheng, W. Fang, M. Fischman, S. Hensley, R. Johnson, M. Jourdan, M. Marina, B. Parham, F. Rogez, P. Rosen, B. Shah, and S. Tafi, Onboard FPGA-Based SAR Processing for Future Spaceborne Systems. Proc. of the Radar Conf., pp. 15–20 (2004).Google Scholar
  32. 32.
    ESA EOP-SFP/2006-09-1240, Statement of Work for the Phase 0 Study of the Six Candidate Earth Explorer Core Missions, Annex 1: Missions Description and Technical Requirement, Paragraph A1.1 The BIOMASS Mission, pp. 1–3 (2006).Google Scholar
  33. 33.
    T. LeToan et al., Relating Forest Biomass to SAR Data, IEEE TGRS, Vol. 30, pp. 403–411 (1992).Google Scholar
  34. 34.
    E. Rignot, R. Zimmermann, R. and J.J. van Zyl, Spacebome Applications of P Band Imaging Radars for Measuring Forest Biomass, IEEE TGRS, Vol. 33, No. 5 (1995).Google Scholar
  35. 35.
    B. Hallberg, G. Smith, A. Olofsson, and L.M.H. Ulander, Performance Simulation of Spaceborne P-band SAR for Global Biomass Retrieval, Proc. of IGARSS (2004).Google Scholar
  36. 36.
    A. Herique, W. Kofman, P. Bauer, F. Remy, and L. Phalippou, A Spaceborne Ground Penetrating Radar: MIMOSA, Proc. of IGARSS, Vol. 1, pp. 473–475 (1999).Google Scholar
  37. 37.
    E. Rodriguez, A. Freeman, K. Jezek, and X. Wu, A New Technique for Interferometric Sounding of Ice Sheets, Proc. of EUSAR (2006).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marco D’Errico
    • 1
  • Giancarmine Fasano
    • 2
  1. 1.Second University of Naples – Department of Aerospace and Mechanical EngineeringAversa (CE)Italy
  2. 2.University of Naples “Federico II” – Department of Aerospace EngineeringNapoliItaly

Personalised recommendations