High-resolution mm interferometry and the search for massive protostellar disks: the case of Cep-A HW2

  • Claudia Comito
  • Peter Schilke
  • Ulrike Endesfelder
  • Izaskun Jiménez-Serra
  • Jesus Martín-Pintado
Conference paper

Abstract

The direct detection of accretion onto massive protostars through rotating disks constitutes an important tile in the massive-star-formation-theory mosaic. This task is however observationally very challenging. A very interesting example is Cepheus A HW2. The properties of the molecular emission around this YSO seems to suggest the presence of a massive rotating disk (cf. Patel et al. in Nature 437:109, 2005). We have carried out sub-arcsec-resolution PdBI observations of high-density and shock tracers such as SO2, SiO, CH3CN, and CH3OH towards the center of the outflow. A detailed analysis of the spatial distribution and of the velocity field traced by all observed species leads us to conclude that, on a ∼700 AU scale, the Cep-A “disk” is actually the result of the superposition of multiple hot-core-type objects, at least one of them ejecting an outflow at a small angle with respect to the line of sight. Together with the well-known large-scale outflow ejected by HW2, this setup makes for a very complex spatial and kinematic picture.

Keywords

High-mass star formation Millimeter-wavelength radioastronomy Millimeter interferometry High-mass disks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beuther, H., et al.: Astron. Astrophys. 387, 931 (2002) CrossRefADSGoogle Scholar
  2. Brogan, C., et al.: Astrophys. Space Sci. (2007). doi:  10.1007/s10509-007-9598-1
  3. Cesaroni, R., et al.: Astron. Astrophys. 325, 525 (1997) Google Scholar
  4. Cesaroni, R., et al.: Astron. Astrophys. 434 (2005) Google Scholar
  5. Comito, C., et al.: Astrophys. J. Suppl. Ser. 156, 127 (2005) CrossRefADSGoogle Scholar
  6. Comito, C., et al.: Astron. Astrophys. 469, 207 (2007) CrossRefADSGoogle Scholar
  7. Edris, K.A., et al.: Astron. Astrophys. 434, 213 (2005) CrossRefADSGoogle Scholar
  8. Gómez, J.F., et al.: Astrophys. J. 514, 287 (1999) CrossRefADSGoogle Scholar
  9. Johnson, H.L.: Astrophys. J. 126, 121 (1957) CrossRefADSGoogle Scholar
  10. Martín-Pintado, J., et al.: Astrophys. J. Lett. 628, L61 (2005) CrossRefADSGoogle Scholar
  11. Patel, N.A., et al.: Nature 437, 109 (2005) CrossRefADSGoogle Scholar
  12. Rodríguez, L.F., et al.: Astrophys. J. 430, L65 (1994) CrossRefADSGoogle Scholar
  13. Schilke, P., et al.: In preparation Google Scholar
  14. Sridharan, T.K., Williams, S.J., Fuller, G.A.: Astrophys. J. Lett. 631, L73 (2005) CrossRefADSGoogle Scholar
  15. Stahler, S.W., et al.: In: Mannings, V., Boss, A.P., Russel, S.S. (eds.) Protostars and Planets IV, p. 327. University of Arizona Press, Tucson (2000) Google Scholar
  16. Torrelles, J.M., et al.: Astrophys. J. 457, L107 (1996) CrossRefADSGoogle Scholar
  17. Zhang, Q., et al.: Astrophys. J. 505, L151 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Claudia Comito
    • 1
  • Peter Schilke
    • 1
  • Ulrike Endesfelder
    • 1
  • Izaskun Jiménez-Serra
    • 2
  • Jesus Martín-Pintado
    • 2
  1. 1.Max-Planck-Institut für RadioastronomieBonnGermany
  2. 2.Consejo Superior de Investigaciones Científicas, Departamento de Astrofísica Molecular e InfrarrojaInstituto de Estructura de la MateriaMadridSpain

Personalised recommendations