Skip to main content

Material forces in finite elasto-plasticity with continuously distributed dislocations

  • Conference paper
Book cover Defect and Material Mechanics

Abstract

In this paper we propose a thermodynamically consistent model for elasto-plastic material with structural inhomogeneities such as dislocations, subjected to large deformations, in isothermal processes. The plastic measure of deformation is represented by a pair of plastic distortion, and plastic connection with non-zero torsion (in order to have the non-zero Burgers vector). The developments are focused on the balance equations (for material forces and for physical force system), derived from an appropriate principle of the virtual power formulated within the constitutive framework of finite elasto-plasticity and on constitutive restrictions imposed by the free energy imbalance. The presence of the material forces (microforce and microstress momentum) is a key point in the exposure, and viscoplastic (generally rate dependent) constitutive representation are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya A (2004). Constitutive analysis of finite deformation field dislocation mechanics. J Mech Phys Solid 52: 301–316

    Article  MATH  MathSciNet  Google Scholar 

  2. Bilby BA (1960). Continuous distribution of dislocations. In: Sneddon, IN and Hill, R (eds) Progress in solid mechanics, pp 329–398. North-Holland, Amsterdam

    Google Scholar 

  3. Beju I, Soós E, Teodorescu PP (1983) Spinor and non-Euclidean tensor calculus with applications. Ed. Tehnica, Bucureşti Romania, Abacus Press, Tunbridge Wells, Kent, England (romanian version 1979)

    Google Scholar 

  4. Brüning M and Ricci S (2005). Nonlocal continuum theory of an isotropically damaged metals. Int J Plast 21: 1346–1382

    Article  Google Scholar 

  5. Cleja-Ţigoiu S (1990) Large elasto-plastic deformations of materials with relaxed configurations – I. Constitutive assumptions, II. Role of the complementary plastic factor. Int J Eng Sci 28:171–180, 273–284

    Google Scholar 

  6. Cleja-Ţigoiu S (2001). A model of crystalline materials with dislocations. In: Cleja-Ţigoiu, S and Ţigoiu, V (eds) Proceedings of 5th international Seminar geometry continua and microstructures, pp 25–36. Sinaia, Romania

    Google Scholar 

  7. Cleja-Ţigoiu S (2002a). Couple stresses and non-Riemannian plastic connection in finite elasto-plasticity. ZAMP 53: 996–1013

    Article  MATH  Google Scholar 

  8. Cleja-Ţigoiu S (2002b). Small elastic strains in finite elasto-plastic materials with continuously distributed dislocations. Theor Appl Mech 28(29): 93–112

    Article  Google Scholar 

  9. Cleja-Ţigoiu S and Maugin GA (2000). Eshelby’s stress tensors in finite elastoplasticity. Acta Mechanica 139: 231–249

    Article  MATH  Google Scholar 

  10. Cleja-Ţigoiu S and Soós E (1990). Elastoplastic models with relaxed configurations and internal state variables. Appl Mech Rev 43: 131–151

    Google Scholar 

  11. Cleja-Ţigoiu S, Fortunée D, Vallée C (2007) Torsion equation in anisotropic elasto-plastic materials with continuously distributed dislocations. Math Mech Solids doi:10.1177/1081286507079157

    Google Scholar 

  12. Epstein M and Maugin GA (2000). Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16: 951–978

    Article  MATH  Google Scholar 

  13. Fleck NA, Muller GM, Ashby MF and Hutchinson JW (1994). Strain gradient plasticity: theory and experiment. Acta Metall Mater 42: 475–487

    Article  Google Scholar 

  14. Forest S, Cailletand G and Sievert R (1997). A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch Mech 49(4): 705–736

    MATH  MathSciNet  Google Scholar 

  15. Gupta A, Steigmann D, Stölken JS (2006) On the evolution of plasticity and incompatibility. Math Mech Solids. online: doi:10.1177/1081286506064721

  16. Gurtin ME (2000). On the plasticity of single crystal: free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48: 989–1036

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurtin ME (2002). A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50: 5–32

    Article  MATH  MathSciNet  Google Scholar 

  18. Gurtin ME (2003). On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int J Plast 19: 47–90

    Article  MATH  Google Scholar 

  19. Gurtin ME (2004). A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers and for dissipation due to plastic spin. J Mech Phys Solids 52: 2545–2568

    Article  MATH  MathSciNet  Google Scholar 

  20. Gurtin ME and Needleman A (2005). Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers. J Mech Phys Solids 53: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  21. Hirth J and Lothe JP (1982). Theory of dislocations. Krieger Publishing, Malabar, Florida

    Google Scholar 

  22. Kondo K, Yuki M (1958) On the current viewpoints of non-Riemannian plasticity theory. In: RAAG memoirs of the unifying study of basic problems in engng and physical sciences by means of geometry II (D), Tokyo, pp 202–226

    Google Scholar 

  23. Kröner E (1963). On the physical reality of torque stresses in continuum mechanics. Gauge theory with disclinations. Int J Eng Sci 1: 261–278

    Article  Google Scholar 

  24. Kröner E (1992). The internal mechanical state of solids with defects. Int J Solids Struct 29: 1849–1857

    Article  MATH  Google Scholar 

  25. Kröner E and Lagoudas DC (1992). Gauge theory with disclinations. Int J Eng Sci 30: 1849–1857

    Article  Google Scholar 

  26. Le KC and Stumpf H (1996a). A model of elastoplastic bodies with continuously distributed dislocations. Int J Plast 12(5): 611–627

    Article  MATH  Google Scholar 

  27. Le KC and Stumpf H (1996b). Nonlinear continuum with dislocations. Int J Eng Sci 34: 339–358

    Article  MATH  MathSciNet  Google Scholar 

  28. Le KC and Stumpf H (1996c). On the determination of the crystal reference in nonlinear continuum theory of dislocation. Proc Roy Soc London A 452: 359–371

    Article  MATH  Google Scholar 

  29. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific

    Google Scholar 

  30. Naghdi PM and Srinivasa AR (1994). Characterization of dislocations and their influence on plastic deformation in single crystal. Int J Eng Sci 32(7): 1157–1182

    Article  MATH  MathSciNet  Google Scholar 

  31. Noll W (1967). Materially uniform simple bodies with inhomogeneities. Arch Rat Mech Anal 27: 1–32

    Article  MathSciNet  Google Scholar 

  32. Schouten JA (1954). Ricci-Calculus. Springer-Verlag, Berlin

    MATH  Google Scholar 

  33. Steinmann P (1994). A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31: 1063–1084

    Article  MATH  MathSciNet  Google Scholar 

  34. Steinmann P (1997) Continuum theory of dislocations: impact to single cristal plasticity. In: Owen DRJ, Onãte E, Hinton E Computational plasticity, fundamental and applications. CIME, Barcelona.

    Google Scholar 

  35. Steinmann P (2002). On spatial and material settings of hyperelastostatic crystal defects. J Mech Phys Solids 50: 1743–1766

    Article  MATH  MathSciNet  Google Scholar 

  36. Stumpf H and Hackle K (2003). Micromechanical concept for analysis of damage evolution in thermo-viscoplastic and quasi-brittle materials. Int J Solids Struct 40: 1567–1584

    Article  MATH  Google Scholar 

  37. Teodosiu C (1970) A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum. In: Simmons JA, de Witt R, Bullough R (eds) Fundamental aspects of dislocation theory, Nat Bur Stand (U.S.), Spec. Publ. 317, II, pp 837–876

    Google Scholar 

  38. Wang CC (1967). On the geometric structure of simple bodies, a Mathematical foundation for the theory of continuous distributions of dislocations. Arch Rat Mech Anal 27: 33–94

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda Cleja-Ţigoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Cleja-Ţigoiu, S. (2007). Material forces in finite elasto-plasticity with continuously distributed dislocations. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6929-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6928-4

  • Online ISBN: 978-1-4020-6929-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics