Skip to main content

A multiscale approach to damage configurational forces

  • Conference paper
  • 1056 Accesses

Abstract

A two-scale homogenization method is used to construct a damage model in the framework of configurational mechanics. The upscaling procedure allows for the identification of damage configurational forces as the result of the microscopic fracture analysis. The obtained damage equation incorporates stiffness degradation, material softening, unilaterality, induced anisotropy. The balance of configurational forces naturally captures a microscopic length, leading to size effects in the overall damage response. The new approach is illustrated in the case of brittle damage, for a three point bending test. Extended finite elements are used for the numerical modeling of macro-crack initiation and growth. The influence of the microscopic size on the failure initiation stress is analyzed and it is shown that this dependence follows a Hall–Petch type rule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agiasofitou E and Dascalu C (2007). Material forces in microfractured bodies. Arch Appl Mech 77: 75–84

    Article  MATH  Google Scholar 

  • Andrieux S, Bamberger Y and Marigo JJ (1986). Un modèle de matériau microfissuré pour les bétons et les roches. J Mec Theor Appl 5: 471–513

    MATH  Google Scholar 

  • Bakhvalov N and Panasenko G (1989). Homogenisation: averaging processes in periodic media. Kluwer Academic Publishers Group, Dordrecht

    MATH  Google Scholar 

  • Basista M and Gross D (1989). The sliding crack model of brittle deformation: an internal variable approach. Int J Solids Struct 35: 487–509

    Article  Google Scholar 

  • Bazant ZP and Planas J (1997). Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton, FL

    Google Scholar 

  • Benssousan A, Lions JL and Papanicolaou G (1978). Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    Google Scholar 

  • Caiazzo AA and Constanzo F (2000). On the constitutive relations of materials with evolving microstructure due to microcracking. Int J Solids Struct 37: 3375–3398

    Article  MATH  Google Scholar 

  • Dascalu C, Bilbie G and Agiasofitou E (2008). Damage and size effects in solids: a homogenization approach. Int J Solids Struct 45: 409–430

    Article  Google Scholar 

  • Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer-Verlag, New York

    Google Scholar 

  • Kienzler R and Herrmann G (2000). Mechanics in material space with applications to defect and fracture mechanics. Springer-Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  • Leguillon D and Sanchez-Palencia E (1982). On the behavior of a cracked elastic body with (or without) friction. J Mech Theor Appl 1: 195–209

    MATH  Google Scholar 

  • Lene F (2004). Damage constitutive relations for composite materials. Eng Fract Mech 25: 713–728

    Article  Google Scholar 

  • Li S, Linder C and Foulk W (2007). On configurational compatibility and multiscale energy momentum tensors. J Mech Phys Solids 55: 980–1000

    Article  MathSciNet  Google Scholar 

  • Li S, Wang G and Morgan E (2004). Effective elastic moduli of two dimensionl solids with distributed cohesive microcracks. Eu J Mech A 23: 925–933

    Article  MATH  Google Scholar 

  • Maugin GA (1993). Material inhomogeneities in elasticity. Chapman and Hall, London

    MATH  Google Scholar 

  • Moes N (1999). A finite element method for crack growth without remeshing. Int J Num Meth Solids 45: 131–150

    Article  Google Scholar 

  • Nemat-Nasser S and Hori M (1999). Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam-Lausann-New York

    Google Scholar 

  • Peerlings RHJ and Fleck NA (2004). Computational evaluation of strain gradient elasticity constants. Int J Multiscale Comput Eng 2: 599–619

    Article  Google Scholar 

  • Pensée V, Kondo D and Dormieux L (2002). Micromechanical analysis of anisotropic damage in brittle materials. J Eng Mech 128: 889–897

    Article  Google Scholar 

  • Petch NJ (1968). In: Liebowitz H (ed) Fracture, vol 1, chap 5. Academic Press, New York, p 351

    Google Scholar 

  • Prat PC and Bazant ZP (1997). Tangential stiffness of slastic materials with systems of growing or closing cracks. J Mech Phys Solids 45: 611–636

    Article  Google Scholar 

  • Raghavan P and Ghosh S (2005). A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mech Mater 37: 955–979

    Google Scholar 

  • Sanchez-Palencia, E (1980) Non-homogeneous media and vibration theory. Lecture notes in physics, vol 127. Springer, Berlin

    Google Scholar 

  • Smyshlyaev VP and Cherednichenko KD (2000). On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J Mech Phys Solids 48: 1325–1357

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dascalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Dascalu, C., Bilbie, G. (2008). A multiscale approach to damage configurational forces. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6929-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6928-4

  • Online ISBN: 978-1-4020-6929-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics