Abstract
The paper deals with conservation laws which are not of the pure divergence type and thus do not provide a path-independent integral for use in Fracture Mechanics. It is shown that Duality is the right tool to re-establish the symmetry between equations and to provide conservation laws of the pure divergence type. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically.
Keywords
- Conservation laws
- Duality
- Symmetry
- Symmetry loss
- Inverse problem
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Achenbach JD and Bazant ZP (1972). Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials. J Appl Mech 97: 183
Aki K and Richards PG (1980). Quantitative seismology, theory & methods, vol 1. W.H. Freeman and Cie, New York
Andrieux S and Ben Abda A (1992). Identification de fissures planes par une donnée de bord unique: un procédé direct de localisation et d’identification. C R Acad Sci Paris 315(I): 1323–1328
Andrieux S and Ben Abda A (1996). Identification of planar cracks by complete overdetermined data inversion formulae. Inverse Probl 12: 553–563
Andrieux S, Bui HD and Ben Abda A (1999). Reciprocity and crack identification. Inverse Probl 15: 59–65
Ben Abda A and Bui HD (2003). Planar cracks identification for the transient heat equation. Inverse Ill-posed Probl 11(1): 67–86
Bui HD (1965). Dissipation of energy in plasticity. Cahier Groupe Français de Rhéologie 1: 15
Bui HD (1967). Transformation des données aux limites relatives au demi-plan élastique. C R Acad Sci Paris 265: 862–865
Bui HD (1974). Dual path-independent integrals in the boundary-value problems of cracks. Eng Fract Mech 6: 287–296
Bui HD (1977) Stress and crack displacement intensity factors in elastodynamics. In: Proceedings of 4th international conference fracture, vol 3. Waterloo, p 91
Bui HD (1984) A path-independent integral for mixed modes of fracture in linear thermo-elasticity. In: IUTAM symposium on fundamental of deformation and fracture. Sheffield, p 597, April 1984
Bui HD (1992). On the variational boundary integral equations in elastodynamics with the use of conjugate functions. J Elast 28: 247
Bui HD (1993) Detection de fissure par une méthode géométrique, In: Horowitch J, Lions JL (eds) ≪A propos des grands Systèmes des Sciences et de la Technologie≫. Masson, Paris
Bui HD (1994). Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton
Bui HD (2006) Fracture mechanics: inverse problems and solutions. Springer
Bui HD and Maigre H (1988). Extraction of stress intensity factors from global mechanical quantities. C R Acad Sci Paris 306(II): 1213
Bui HD and Proix JM (1984). Lois de conservation en thermoélasticité linéaire. C R Acad Sci Paris 298(II): 325
Bui HD, Ehrlacher A, Nguyen QS (1980) Crack propagation in coupled thermo-elasticity. J Meca 19:697. Gauthier-Villars, Paris
Bui HD, Maigre H and Rittel D (1992). A new approach to the experimental determination of the dynamic stress intensity factors. Int J Solids Struct 29: 2881–2895
Bui HD, Constantinescu A and Maigre H (1999). Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded solid. C R Acad Sci Paris 327(II): 971–976
Bui HD, Constantinescu A and Maigre H (2005a). An exact inversion formula for determining a planar fault from boundary measurements. Inv Ill-posed Probl 13(6): 553–565
Bui HD, Constantinescu A and Maigre H (2005). The reciprocity gap functional for identifying defects and cracks. In: Mroz, Z and Stavroulakis, GE (eds) In Parameter identification of materials and structures. CISM course and lecture, vol 469, pp. Springer, Wien, New York
Calderon AP (1980) On an inverse boundary problem. In: Meyer WH, Raupp MA (eds) Seminar on numerical and applications in continuum physics. Brazilian Mathematical Society, Rio de Janeiro, pp 65–73
Fletcher DC (1976). Conservation laws in linear elastodynamics. Arch Rat Mech Anal 60: 329
Germain P (1973). The method of virtual power in continuum mechanics. PartII. In: Domingos, JJD (eds) Applications to continuum thermodynamics., pp 317–333. J. Wiley, New York
Germain P (1978). Duality and convection in continuum mechanics. In: Fichera, G (eds) Trends in applications to mechanics., pp 107–128. Pitman, London
Halphen B and Nguyen QS (1975). Sur les matériaux standards généralisés. J Méca 14: 39
Ikehata M (1998). Inversion for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J Math Anal 50(6): 1635
Lubliner J (1974). A simple theory of plasticity. Int J Solids Struct 10: 310
Mandel J (1965). Energie élastique et travail dissipé dans les modèles rhéologiques. Cahier Groupe Français de Rhéologie 1: 1
Moreau JJ (1963). Fonctionnelles sous différentiables. C R Acad Sci Paris 257: 4117–4119
Moreau JJ (1966) Fonctionnelles convexes. Séminaire Equations aux Dérivées Partielles. Collège de France
Nguyen QS and Bui HD (1974). Sur les matéraux à écrouissage positif ou négatif. J Meca 13(2): 321–342
Rice JR (1968) Mathematical analysis in the Mechanics of Fracture. In: Liebowitz H (ed) Fracture. Academic Press, p 191
Rockafellar RT (1966). Characterization of the subdifferentials of convex functions. Pac J Math 17: 497–510
Schwartz L (1978). Théorie des distributions. Hermann, Paris
Tikhonov A and Arsenine V (1977). Méthode de résolution de problèmes mal posés. Editions Mir, Moscou
Tonti E (1975) On the formal structure of physical theories. Cooperative Library Instituto di Polytechnico di Milano, Milano
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Additional information
Dedicated to George Herrmann.
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media B.V.
About this paper
Cite this paper
Bui, H.D. (2007). Conservation laws, duality and symmetry loss in solid mechanics. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_15
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6929-1_15
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6928-4
Online ISBN: 978-1-4020-6929-1
eBook Packages: EngineeringEngineering (R0)