Skip to main content

Conservation laws, duality and symmetry loss in solid mechanics

  • Conference paper
  • 1040 Accesses

Abstract

The paper deals with conservation laws which are not of the pure divergence type and thus do not provide a path-independent integral for use in Fracture Mechanics. It is shown that Duality is the right tool to re-establish the symmetry between equations and to provide conservation laws of the pure divergence type. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically.

Keywords

  • Conservation laws
  • Duality
  • Symmetry
  • Symmetry loss
  • Inverse problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach JD and Bazant ZP (1972). Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials. J Appl Mech 97: 183

    Google Scholar 

  • Aki K and Richards PG (1980). Quantitative seismology, theory & methods, vol 1. W.H. Freeman and Cie, New York

    Google Scholar 

  • Andrieux S and Ben Abda A (1992). Identification de fissures planes par une donnée de bord unique: un procédé direct de localisation et d’identification. C R Acad Sci Paris 315(I): 1323–1328

    MATH  MathSciNet  Google Scholar 

  • Andrieux S and Ben Abda A (1996). Identification of planar cracks by complete overdetermined data inversion formulae. Inverse Probl 12: 553–563

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Andrieux S, Bui HD and Ben Abda A (1999). Reciprocity and crack identification. Inverse Probl 15: 59–65

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Ben Abda A and Bui HD (2003). Planar cracks identification for the transient heat equation. Inverse Ill-posed Probl 11(1): 67–86

    CrossRef  MathSciNet  Google Scholar 

  • Bui HD (1965). Dissipation of energy in plasticity. Cahier Groupe Français de Rhéologie 1: 15

    Google Scholar 

  • Bui HD (1967). Transformation des données aux limites relatives au demi-plan élastique. C R Acad Sci Paris 265: 862–865

    Google Scholar 

  • Bui HD (1974). Dual path-independent integrals in the boundary-value problems of cracks. Eng Fract Mech 6: 287–296

    CrossRef  Google Scholar 

  • Bui HD (1977) Stress and crack displacement intensity factors in elastodynamics. In: Proceedings of 4th international conference fracture, vol 3. Waterloo, p 91

    Google Scholar 

  • Bui HD (1984) A path-independent integral for mixed modes of fracture in linear thermo-elasticity. In: IUTAM symposium on fundamental of deformation and fracture. Sheffield, p 597, April 1984

    Google Scholar 

  • Bui HD (1992). On the variational boundary integral equations in elastodynamics with the use of conjugate functions. J Elast 28: 247

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bui HD (1993) Detection de fissure par une méthode géométrique, In: Horowitch J, Lions JL (eds) ≪A propos des grands Systèmes des Sciences et de la Technologie≫. Masson, Paris

    Google Scholar 

  • Bui HD (1994). Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  • Bui HD (2006) Fracture mechanics: inverse problems and solutions. Springer

    Google Scholar 

  • Bui HD and Maigre H (1988). Extraction of stress intensity factors from global mechanical quantities. C R Acad Sci Paris 306(II): 1213

    MATH  Google Scholar 

  • Bui HD and Proix JM (1984). Lois de conservation en thermoélasticité linéaire. C R Acad Sci Paris 298(II): 325

    MATH  Google Scholar 

  • Bui HD, Ehrlacher A, Nguyen QS (1980) Crack propagation in coupled thermo-elasticity. J Meca 19:697. Gauthier-Villars, Paris

    Google Scholar 

  • Bui HD, Maigre H and Rittel D (1992). A new approach to the experimental determination of the dynamic stress intensity factors. Int J Solids Struct 29: 2881–2895

    CrossRef  Google Scholar 

  • Bui HD, Constantinescu A and Maigre H (1999). Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded solid. C R Acad Sci Paris 327(II): 971–976

    MATH  Google Scholar 

  • Bui HD, Constantinescu A and Maigre H (2005a). An exact inversion formula for determining a planar fault from boundary measurements. Inv Ill-posed Probl 13(6): 553–565

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bui HD, Constantinescu A and Maigre H (2005). The reciprocity gap functional for identifying defects and cracks. In: Mroz, Z and Stavroulakis, GE (eds) In Parameter identification of materials and structures. CISM course and lecture, vol 469, pp. Springer, Wien, New York

    Google Scholar 

  • Calderon AP (1980) On an inverse boundary problem. In: Meyer WH, Raupp MA (eds) Seminar on numerical and applications in continuum physics. Brazilian Mathematical Society, Rio de Janeiro, pp 65–73

    Google Scholar 

  • Fletcher DC (1976). Conservation laws in linear elastodynamics. Arch Rat Mech Anal 60: 329

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Germain P (1973). The method of virtual power in continuum mechanics. PartII. In: Domingos, JJD (eds) Applications to continuum thermodynamics., pp 317–333. J. Wiley, New York

    Google Scholar 

  • Germain P (1978). Duality and convection in continuum mechanics. In: Fichera, G (eds) Trends in applications to mechanics., pp 107–128. Pitman, London

    Google Scholar 

  • Halphen B and Nguyen QS (1975). Sur les matériaux standards généralisés. J Méca 14: 39

    MATH  Google Scholar 

  • Ikehata M (1998). Inversion for the linearized problem for an inverse boundary value problem in elastic prospection. SIAM J Math Anal 50(6): 1635

    MathSciNet  Google Scholar 

  • Lubliner J (1974). A simple theory of plasticity. Int J Solids Struct 10: 310

    MathSciNet  Google Scholar 

  • Mandel J (1965). Energie élastique et travail dissipé dans les modèles rhéologiques. Cahier Groupe Français de Rhéologie 1: 1

    Google Scholar 

  • Moreau JJ (1963). Fonctionnelles sous différentiables. C R Acad Sci Paris 257: 4117–4119

    MATH  MathSciNet  Google Scholar 

  • Moreau JJ (1966) Fonctionnelles convexes. Séminaire Equations aux Dérivées Partielles. Collège de France

    Google Scholar 

  • Nguyen QS and Bui HD (1974). Sur les matéraux à écrouissage positif ou négatif. J Meca 13(2): 321–342

    MATH  MathSciNet  Google Scholar 

  • Rice JR (1968) Mathematical analysis in the Mechanics of Fracture. In: Liebowitz H (ed) Fracture. Academic Press, p 191

    Google Scholar 

  • Rockafellar RT (1966). Characterization of the subdifferentials of convex functions. Pac J Math 17: 497–510

    MATH  MathSciNet  Google Scholar 

  • Schwartz L (1978). Théorie des distributions. Hermann, Paris

    MATH  Google Scholar 

  • Tikhonov A and Arsenine V (1977). Méthode de résolution de problèmes mal posés. Editions Mir, Moscou

    Google Scholar 

  • Tonti E (1975) On the formal structure of physical theories. Cooperative Library Instituto di Polytechnico di Milano, Milano

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy Duong Bui .

Editor information

Editors and Affiliations

Additional information

Dedicated to George Herrmann.

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bui, H.D. (2007). Conservation laws, duality and symmetry loss in solid mechanics. In: Dascalu, C., Maugin, G.A., Stolz, C. (eds) Defect and Material Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6929-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6929-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6928-4

  • Online ISBN: 978-1-4020-6929-1

  • eBook Packages: EngineeringEngineering (R0)