Advertisement

Variational design sensitivity analysis in the context of structural optimization and configurational mechanics

Conference paper

Abstract

Variational design sensitivity analysis is a branch of structural optimization. We consider variations of the material configuration and we are interested in the change of the state variables and the objective functional due to these variations. In the same manner in configurational mechanics we are interested in changes of the material body. In this paper, we derive the physical and material residual problem by using standard optimization procedures and we investigate sensitivity relations for the physical and material problem. These sensitivity relations are used in order to solve the coupled physical and material problem. Both problems are coupled by the pseudo load operator, which play an important role for the solution of structural optimization problems. Furthermore, we derive explicit formulations for the variations of the physical and material problem and propose different solution algorithms for the coupled problem.

Keywords

Variational sensitivity analysis Structural optimization Configurational mechanics Mesh optimization Shape optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askes H, Kuhl E and Steinmann P (2004). An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: classification and applications. Comput Methods Appl Mech Eng 193: 4223–4245 MATHCrossRefMathSciNetGoogle Scholar
  2. Barthold FJ (2002) Zur Kontinuumsmechanik inverser Geometrieprobleme. Habilitationsschrift, Braunschweiger Schriften zur Mechanik 44-2002, TU Braunschweig, URL http://hdl.handle.net/2003/23095
  3. Barthold FJ (2003). A structural optimization viewpoint on configurational mechanics. Proc Appl Math Mech 3: 246–247 CrossRefGoogle Scholar
  4. Barthold FJ (2005) On structural optimisation and configurational mechanics. In: Steinmann P, Maugin GA (eds) Mechanics of material forces, vol 11. Springer-Verlag, pp 219–228Google Scholar
  5. Barthold FJ (2007) Remarks on variational shape sensitivity analysis based on local coordinates. Eng Anal Boundary Elem. Accepted for publicationGoogle Scholar
  6. Barthold FJ, Mesecke S (1999) Remarks on computing the energy release rate and its sensitivities. In: Mota Soares C, Mota Soares C, Freitas M (eds) Mechanics of composite materials and structures, NATO science series, Serie E: applied science, vol 361. Kluwer Academic Publishers, pp 341–350Google Scholar
  7. Barthold FJ and Stein E (1996). A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I: analysis. Struct Optim 11(1/2): 29–42 CrossRefGoogle Scholar
  8. Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer-VerlagGoogle Scholar
  9. Benzi M and Golub GH (2004). A preconditioner for generalized saddle point problems. Siam J Matrix Anal Appl 26(1): 20–41 MATHCrossRefMathSciNetGoogle Scholar
  10. Bertram A (1989). Axiomatische Einführung in die Kontinuumsmechanik. BI-Wissenschaftsverlag, Mannheim MATHGoogle Scholar
  11. Braun M (1997). Configurational forces induced by finite-element discretisation. Proc Estonian Acad Sci Phys Math 46: 24–31 MATHMathSciNetGoogle Scholar
  12. Carpenter WC and Zendegui S (1982). Optimum nodal locations for a finite element idealization. Eng Optim 5: 215–221 CrossRefGoogle Scholar
  13. Carroll WE and Barker RM (1973). A theorem for optimum finite-element idealizations. Int J Solids Struct 9: 883–895 CrossRefMathSciNetGoogle Scholar
  14. Chadwick P (1975). Applications of an energy-momentum tensor in non-linear elastostatics. J Elast 5(3–4): 249–258 MATHCrossRefMathSciNetGoogle Scholar
  15. Choi KK and Kim NH (2005a). Structural sensitivity analysis and optimization 1—linear systems. Mechanical engineering series. Springer-Verlag, Berlin Google Scholar
  16. Choi KK and Kim NH (2005b). Structural sensitivity analysis and optimization 2—nonlinear systems and applications. Mechanical engineering series. Springer-Verlag, Berlin Google Scholar
  17. Dems K and Mróz Z (1978). Multiparameter structural shape optimization by the finite element method. Int J Numer Methods Eng 13(2): 247–263 MATHCrossRefGoogle Scholar
  18. Engl HW, Hanke M, Neubauer A (2000) Regularization of inverse problems. Kluwer Academic PublishersGoogle Scholar
  19. Eshelby JD (1951). The force on an elastic singularity. Philos Trans R Soc Lond 244: 87–112 CrossRefMathSciNetMATHGoogle Scholar
  20. Eshelby JD (1975). The elastic energy-momentum tensor. J Elast 5: 321–335 MATHCrossRefMathSciNetGoogle Scholar
  21. Govindjee S and Mihalic PA (1996). Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136(1–2): 47–57 MATHCrossRefGoogle Scholar
  22. Gurtin ME (2000). Configurational forces as basic concepts of continuum physics. Springer-Verlag, New York Google Scholar
  23. Kalpakides VK and Balassas KG (2005). The inverse deformation mapping in the finite element method. Philos Mag 85(33–35): 4257–4275 CrossRefGoogle Scholar
  24. Kamat MP (1993). Structural optimization: status and promise. American Institute of Aeronautics and Astronautics, Washington Google Scholar
  25. Kienzler R and Herrmann G (2000). Mechanics in material space. Springer-Verlag, Berlin Heidelberg New York MATHGoogle Scholar
  26. Kuhl E, Askes H and Steinmann P (2004). An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193: 4207–4222 MATHCrossRefMathSciNetGoogle Scholar
  27. Marsden JE and Hughes TJR (1994). Mathematical foundations of elasticity. Dover, New York Google Scholar
  28. Materna D and Barthold FJ (2006a). Coherence of structural optimization and configurational mechanics. Proc Appl Math Mech 6(1): 245–246. DOI  10.1002/pamm.200610103 CrossRefGoogle Scholar
  29. Materna D, Barthold FJ (2006b) Relations between structural optimization and configurational mechanics with applications to mesh optimization. In: Sienz J, Querin OM, Toropov VV, Gosling PD (eds) Proceedings of the 6th ASMO-UK/ISSMO conference on engineering design optimization, St Edmund Hall, Oxford, UK, University of Leeds, UK, pp 173–181Google Scholar
  30. Materna D, Barthold FJ (2007a) On variational sensitivity analysis and configurational mechanics. Comput Mech. Accepted for publicationGoogle Scholar
  31. Materna D, Barthold FJ (2007b) The use of singular value decomposition in sensitivity analysis and mesh optimization. To be submittedGoogle Scholar
  32. Maugin GA (1993). Material inhomogeneities in elasticity. Chapman & Hall, London MATHGoogle Scholar
  33. McNeice GM and Marcal PE (1973). Optimization of finite element grids based on minimum potential energy. ASME J Eng Indust 95(1): 186–190 Google Scholar
  34. Mosler J and Ortiz M (2006). On the numerical modeling of variational arbitrary lagrangian-eulerian (vale) formulations. Int J Numer Methods Eng 67: 1272–1289 MATHCrossRefMathSciNetGoogle Scholar
  35. Mueller R and Maugin GA (2002). On material forces and finite element discretizations. Comput Mech 29: 52–60 MATHCrossRefMathSciNetGoogle Scholar
  36. Nocedal J, Wright SJ (1999) Numerical optimization. Springer-VerlagGoogle Scholar
  37. Noll W (1972). A new mathematical theory of simple materials. Arch Rational Mech Anal 48(1): 1–50 MATHCrossRefMathSciNetGoogle Scholar
  38. Shield RT (1967). Inverse deformation results in finite elasticity. Z Angew Math Phys 18: 490–500 MATHCrossRefGoogle Scholar
  39. Steinmann P (2000). Application of material forces to hyperelastic fracture mechanics. I. Continuum mechanical settings. Int J Solids Struct 37: 7371–7391 MATHCrossRefMathSciNetGoogle Scholar
  40. Steinmann P, Maugin GA (eds) (2005) Mechanics of material forces. Springer-VerlagGoogle Scholar
  41. Thoutireddy P (2003) Variational arbitrary lagrangian-eulerian method. Phd thesis, California Institute of Technology, Passadena, CaliforniaGoogle Scholar
  42. Truesdell C and Noll W (2004). The nonlinear field theories of mechanics, 3rd edn. Springer-Verlag, Berlin MATHGoogle Scholar
  43. Zhang S and Belegundu A (1993). Mesh distortion control in shape optimization. AIAA J 31(7): 1360–1362 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Numerical Methods and Information ProcessingUniversity of DortmundDortmundGermany

Personalised recommendations