Evaluation of Phenotypic and Genetic Techniques to Analyze Diversity of Pseudomonas syringae pv. syringae Strains Isolates from Mango Trees

  • J. A. Gutiérrez-Barranquero
  • E. Arrebola
  • A. Pérez-García
  • J. C. Codina
  • Jesus Murillo
  • A. De Vicente
  • F. M. Cazorla

Bacterial apical necrosis of mango, produced by Pseudomonas syringae pv. syringae (Pss), is the main disease affecting mango production in the Mediterranean area. Surveys carried out in the main areas of cultivation ascertained the presence of Pss strains and resulted in a collection of Pss strains from different seasons and locations (including mainland Spain and Canary Islands, Portugal, Italy and Israel). To study the diversity relationships among these Pss strains, different phenotypic and genetic techniques were evaluated by using a selection of representative Pss strains isolated from mango tissues. The use of physiological tests were based on conventional identification techniques (API tests), toxins production based on biological tests, and analysis of copper resistance. The genetic diversity studies were mainly based on repetitive PCR fingerprinting using ERIC, BOX and REP primers set with UPGMA analysis, and 16S rDNA gene sequencing and ARDRA analysis. Additionally, the native plasmid profiles of these representative strains were determined, and the presence of some genes of interest were detected by hybridization analysis in the most abundant plasmid (62 kb). Preliminary results indicate a considerable phenotypic diversity. Analysis of genetic techniques resulted in repetitive PCR fingerprintings using some primers sets, showing higher diversity than the other techniques used.

Keywords

PCR-RFLP of 16S rDNA rep-PCR native plasmids copper resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrebola E., Arrebola, E., Cazorla, F.M., Durán, V.E., Rivera, E., Olea, F., Codina, J.C., Pérez-García, A., and de Vicente, A. (2003) Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiological and Molecular Plant Pathology 63:117–127.CrossRefGoogle Scholar
  2. Bender C.L. and Cooksey D.A. (1986) Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. Journal of Bacteriology 165:534–541.PubMedGoogle Scholar
  3. Bender C.L. and Cooksey D.A. (1987) Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato. Journal of Bacteriology 169: 470–474.PubMedGoogle Scholar
  4. Bhattacharya D., Sarma P.M., Krishnan S., Mishra S. and Lal B. (2003) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Applied and Environmental Microbiology 69: 1435–1441.PubMedCrossRefGoogle Scholar
  5. Cazorla F.M., Torés J.A., Olalla L., Pérez-García A., Farré J.M. and de Vicente A. (1998) Bacterial apical necrosis of mango in southern Spain: a disease caused by Pseudomonas syringae pv. syringae. Phytopathology 88: 614–620.PubMedCrossRefGoogle Scholar
  6. Cazorla F.M., Arrebola E., Sesma A., Pérez-García A., Codina J.C., Murillo J. and de Vicente A. (2002a) Copper resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology 92(8): 909–916.PubMedCrossRefGoogle Scholar
  7. Cazorla F.M., Arrebola E., Abad C., Codina J.C., Pérez-García A., and de Vicente A. (2002b) Epiphytic fitness of Pseudomonas syringae pv. syringae on mango trees is increased by 62-kb plasmids. In: N.S. Iacobellis, A. Collmer, S.W. Hutcheson, J.W. Mansfield, C.E. Morris, J. Murillo, N.W. Schaad, D.E. Stead, G. Surico and M.S. Ullrich (eds), Pseudomonas syringae and Related Pathogens. Biology and Genetic. Kluwer, Dordrecht, The Netherlands, pp. 79–88.Google Scholar
  8. Cazorla F.M., Arrebola E., Olea F., Velasco L., Hermoso J.M., Pérez-García A., Torés J.A., Farré J.M. and de Vicente A. (2006) Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera indica) caused by Pseudomonas syringae pv. syringae. European Journal of Plant Pathology 116: 279–288.CrossRefGoogle Scholar
  9. Cuppels D.A. (1986). Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Applied and Environmental Microbiology 52: 323–327.Google Scholar
  10. Gasson M.J. (1980) Indicator technique for antimetabolic toxin production by phytopatogenic species of Pseudomonas. Applied and Environmental Microbiology 39: 25–29.PubMedGoogle Scholar
  11. Gross D.C. and De Vay S.E. (1977) Production and purification of syringomycin, a phytotoxin produced by a Pseudomonas syringae. Physiological Plant Pathology 11:13–28.Google Scholar
  12. Hayashimoto, N., Takakura, A. and Itoh, T. (2005) Genetic diversity on 16S rDNA sequence and phylogenic tree analysis in Pasteurella pneumotropica strains isolated from laboratory animals. Current Microbiology 51(4): 239–243.PubMedCrossRefGoogle Scholar
  13. Hirano S.S., Charkowski A.O., Collmer A., Willis D.K. and Upper C.D. (1999) Role of the Hrp type III protein secretion system in growth of Pseudomonas syringae pv. syringae B728a on host plants in the field. Proceedings of the Natural Academy of Sciences USA 96: 9851–9856.CrossRefGoogle Scholar
  14. Iacobellis N.S., Lavermicocca P., Grgurina I., Simmaco M. and Ballio A. (1992) Phytotoxic properties of Pseudomonas syringae pv. syringae toxins. Physiological and Molecular Plant Pathology 40: 107–16.CrossRefGoogle Scholar
  15. Louws F.J., Full bright D.W., Stephens C.T. and De Brujin F.J. (1994) Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology 60: 2286–2295.PubMedGoogle Scholar
  16. Murillo J. and Keen N.T. (1994) Two native plasmids of Pseudomonas syringae pathovar tomato strain PT23 share a large amount of repeated DNA, including replication sequences. Molecular Microbiology 12: 941–950.PubMedCrossRefGoogle Scholar
  17. Oguiza A., Rico A., Rivas L.A., Sutra L., Vivian A. and Murillo J. (2004) Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster. Microbiology 150: 473–482.PubMedCrossRefGoogle Scholar
  18. Pinkas Y., Maymon M. and Smolewich Y. (1996) Bacterial black blight of mango. Alon Hanotea 50: 475.Google Scholar
  19. Porteous L.A., Widmer F. and Seidler R.J. (2002) Multiple enzyme restriction fragment length polymorphism analysis for high resolution distinction of Pseudomonas (sensu stricto) 16S rRNA genes. Journal of Microbiological Methods 51: 337–348.PubMedCrossRefGoogle Scholar
  20. Rademaker J.L., Hoste B., Louws F.J., Kersters K., Swings J., Vauterin L., Vauterin P. and De Bruijn F.J. (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. International Journal of Systematic and Evolutionary Microbiology 50: 665–677.PubMedGoogle Scholar
  21. Rasschaert G., Houf K., Imberechts H., Grijspeerdt K., De Zutter L., and Heyndrickx M. (2005) Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. Journal of Clinical Microbiology 43(8): 3615–3623.PubMedCrossRefGoogle Scholar
  22. Sambrook J. and Russell D.W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  23. Scortichini M., Natalini E. and Marchesi U. (2006) Evidence for separate origins of the two Pseudomonas avellanae lineages. Plant Pathology 55: 451–457.CrossRefGoogle Scholar
  24. Smit E., Leeflang P., Gommans S., Van Den Broek J. Van Mil S. and Wernars K. (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology 67(5): 2284–2291.PubMedCrossRefGoogle Scholar
  25. Stackebrandt E. and Goodfellow M. (1991) Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, NH.Google Scholar
  26. Sundin G.W. and Bender C.L. (1996) Molecular analysis of closely related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid 35: 98–107.PubMedCrossRefGoogle Scholar
  27. Teverson D.M. (1991) Genetics of pathogenicity and resistance in the halo blight disease of beans in Africa. Ph.D. thesis. University of Birmingham, Birmingham, UK.Google Scholar
  28. Torta L., Lo Piccolo S., Burruano S., Lo Cantore P. and Iacobellis N.S. (2003) Necrosi apicale del mango (Mangifera indica L.) causata da Pseudomonas syringae pv. syringae van Hall in Sicilia. Informatore Fitopatologico 11: 44–46.Google Scholar
  29. Versalovic J., Schneider M., De Brujin F.J. and Lupski J.R. (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology 5: 25–40.Google Scholar
  30. Weingart H. and Volksch B. (1997) Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Applied and Environmental Microbiology 63: 156–161.PubMedGoogle Scholar
  31. Zhou C., Yang Y. and Jong A. (1990) Miniprep in ten minutes. BioTechniques 8: 172–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V 2008

Authors and Affiliations

  • J. A. Gutiérrez-Barranquero
    • 1
  • E. Arrebola
    • 1
  • A. Pérez-García
    • 1
  • J. C. Codina
    • 1
  • Jesus Murillo
    • 2
  • A. De Vicente
    • 1
  • F. M. Cazorla
    • 1
  1. 1.Departamento de MicrobiologíaUniversidad de MálagaSpain
  2. 2.Laboratorio de Patología VegetalUniversidad Pública de NavarraSpain

Personalised recommendations