Skip to main content

Genetic Diversity – Understanding Conservation at Genetic Levels

  • Chapter

In this chapter, you will learn about:

  1. 1.

    Why genetic concerns are central to the study of conservation biology

  2. 2.

    How to measure the genetic attributes of individuals and populations

  3. 3.

    Why inbreeding can pose threats to population persistence

  4. 4.

    The roles of hybridization and introgression in conserving biodiversity

Conservation biology is a science concerned with the fate of populations, which are defined and identified by their genetic constituency. This unique genetic makeup not only distinguishes them from other populations, but also determines their capacity to adapt to changing conditions and, potentially, to produce new species. Many conservationists would argue that the conservation of genetic diversity is the foundational basis of all conservation efforts because genetic diversity is requisite for evolutionary adaptation, and such adaptation is the key to the long-term survival of any species (Schemske et al. 1994). To assure such survival, conservation biologists have two primary goals in the area of genetics. One is to preserve significant amounts of heritable genetic variation, particularly in small populations threatened with extinction. The other is to prevent the fixation of deleterious alleles, a fixation that can contribute to reduced fitness and accumulation of harmful mutations (Lynch 1996). Preserving high levels of heritable variation helps to retain a population’s current reproductive fitness and maintain its evolutionary potential, its capacity to adapt to environmental change over the long term. Preventing the fixation of deleterious alleles is intended to prevent declines in survivorship and fecundity that often occur in small populations as a result of reduced genetic diversity. Thus, the two goals are intimately related, and the overall aim and application of conservation genetics is to preserve species not simply as static forms, but as dynamic entities capable of responding to and coping with environmental change through time. Only when species possess this kind of adaptive potential do they have a reasonable expectation of persistence in a changing world, and only through maintaining their genetic diversity can they hope to possess this potential.

To achieve these goals, conservation genetics today encompasses three categories of activities: (1) genetic management of small populations to maximize the retention of genetic diversity and minimize inbreeding, (2) resolution of taxonomic uncertainties and delineation of management units based on genetic characteristics of populations, and (3) use of genetic analyses in forensics, especially in the enforcement of conservation laws and treaties, and in understanding the biology of target species. We will examine each category in detail in this and the next chapter to understand and appreciate the significance of the kinds of approaches and techniques that can be used in each of these categories. In this chapter, we will develop a conceptual understanding of conservation genetics, including its history, development, and theoretical framework. In the following chapter (Chapter 7), we will address more specific applications of genetic knowledge, skills, and techniques in actual conservation management. We begin with an overview of the foundations of conservation genetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrewartha, H. G., and L. C. Birch. 1954. The distribution and abundance of animals. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Bangert, R. K., R. J. Turek, G. D. Martinsen, G. M. Wimp, J. K. Bailey, and T. G. Whitam. 2005. Benefits of conservation of plant genetic diversity to arthropod diversity. Conservation Biology 19:379–390

    Article  Google Scholar 

  • Berry, R. J. 1971. Conservation aspects of the genetical constitution of populations. In: E. Duffy and A. S. Watt (eds) The scientific management of animal and plant communities for conservation. Blackwell, Oxford, England, pp 177–206

    Google Scholar 

  • Boriase, S. C., D. A. Loebel, R. Frankham, R. K. Nurthen, and D. A. Briscoe. 1993. Modeling problems in conservation genetics using captive Drosophila populations: consequences of equalization of family sizes. Conservation Biology 7:122–131

    Article  Google Scholar 

  • Briton, J., R. K. Nurthen, D. A. Briscoe, and R. Frankham. 1994. Modeling problems in conservation genetics using Drosophila: consequences of harems. Biological Conservation 69:267–275

    Article  Google Scholar 

  • Carney, S. E., D. E. Wolf, and L. H. Rieseberg. 2000. Hybridization and forest conservation. In: A. Young, D. Boshier, and T. Boyle (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, Victoria, Australia, pp 167–182

    Google Scholar 

  • Caughley, G. 1994. Directions in conservation biology. Journal of Animal Ecology 63:215–244

    Article  Google Scholar 

  • Chesser, R. K., O. E. Rhodes Jr., and M. H. Smith. 1996. Gene conservation. In: Rhodes, O. E. Jr., R. K. Chesser, and M. H. Smith (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, IL, pp 237–252

    Google Scholar 

  • den Boer, P. J. 1968. Spreading of risk and stabilization of animal numbers. Acta Biotheoretica 18:165–194

    Article  Google Scholar 

  • Ezzell, C. 1991. Conserving a coyote in wolf’s clothing? Science News 139:374–375

    Article  Google Scholar 

  • Fisher, R. A. 1958. The genetical theory of natural selection. Dover Publications, Toronto, Canada

    Google Scholar 

  • Frankel, O.H., and M.E. Soulé. 1981. Conservation and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankham, R. 1980. The founder effect and response to artificial selection in Drosophila. In: A. Robertson (ed) Selection experiments in laboratory and domestic animals. Commonwealth Agricultural Bureau, Farnham Royal, Australia, pp 87–90

    Google Scholar 

  • Frankham, R. 1995a. Conservation genetics. Annual Review of Genetics 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Frankham, R. 1995b. Inbreeding and extinction: a threshold effect. Conservation Biology 9:792–799

    Article  Google Scholar 

  • Frankham, R. 2005. Stress and adaptation in conservation genetics. Journal of Evolutionary Biology 18:750–755

    Article  PubMed  CAS  Google Scholar 

  • Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin, I. R. 1980. Evolutionary change in small populations. In: M. E. Soulé and B. A. Wilcox (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149

    Google Scholar 

  • Fredrickson, R. J., and P. W. Hedrick. 2006. Dynamics of hybridization and introgression in red wolves and coyotes. Conservation Biology 20:1272–1283

    Article  PubMed  Google Scholar 

  • Grant, V. 1971. Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grant, V., and K. A. Grant. 1965. Flower pollination in the phlox family. Columbia University Press, New York

    Google Scholar 

  • Groom, M. J. 1998. Allee effects limit population viability of an annual plant. American Naturalist 151:487–496

    Article  PubMed  CAS  Google Scholar 

  • Groombridge, J. J., C. G. Jones, M. W. Bruford, and R. A. Nichols. 2000. ‘Ghost’ alleles of the Mauritius kestrel. Nature 403:616

    Article  PubMed  CAS  Google Scholar 

  • Hamrick, J. L., and M. J. W. Godt. 1989. Allozyme diversity in plant species. In: A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hamrick, J. L., and J. D. Nason. 1996. Consequences of dispersal in plants. In: Rhodes, Olin E. Jr., Ronald K. Chesser, and Michael H. Smith (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, IL, pp 203–236

    Google Scholar 

  • Hanski, I., and D. Simberloff. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: I. Hanski and M. E. Gilpin (eds) Metapopulation biology: ecology, genetics, and evolution. Academic, San Diego, CA, pp 5–26

    Google Scholar 

  • Hedrick, P. W., 1995. Gene flow and genetic restoration: the Florida panther as a case study. Conservation Biology 9:996–1007

    Article  Google Scholar 

  • Hedrick, P. W., and S. T. Kalinowski. 2000. Inbreeding depression in conservation biology. Annual Review of Ecology and Systematics 31:139–162

    Article  Google Scholar 

  • Hill, R., and C. Sendashonga. 2006. Conservation biology, genetically modified organisms, and the biosafety protocol. Conservation Biology 20:1620–1625

    Article  PubMed  Google Scholar 

  • Holsinger, K. E., R. J. Mason-Gamer, and J. Whitton. 1999. Genes, demes, and plant conservation. In: L. F. Landweber and A. P. Dobson (eds) Genetics and the extinction of species: DNA and the conservation of biodiversity. Princeton University Press, Princeton, NJ, pp 23–46

    Google Scholar 

  • Hooper, M. D. 1971. The size and surroundings of nature reserves. In: E. Duffy and A. S. Watt (eds) The scientific management of animal and plant communities for conservation. Blackwell, Oxford, England, pp 555–561

    Google Scholar 

  • Jiménez, J. A., K. A. Hughes, G. Alaks, L. Graham, and R. C. Lacy. 1994. An experimental study of inbreeding depression in a natural habitat. Science 266:271–273

    Article  PubMed  Google Scholar 

  • Keller, L. F., P. Arcese, J. N. M. Smith, W. M. Hochachka, and S. C. Stearns. 1994. Selection against inbred song sparrows during a natural population bottleneck. Nature 372:356–357

    Article  PubMed  CAS  Google Scholar 

  • Land, D., M. Lotz, D. Shindle, and S. K. Taylor. 1999. Florida panther genetic restoration and management: annual performance report. Florida Fish and Wildlife Conservation Commission, Naples, FL

    Google Scholar 

  • Lande, R. 1988. Genetics and demography in biological conservation. Science 241:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Latter, B. D. H., J. C. Mulley, D. Reid, and L. Pascoe. 1995. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster. Genetics 139:287–297

    PubMed  CAS  Google Scholar 

  • Levins, R. 1968. Evolution in changing environments: some theoretical explorations. Monograph in Population Biology, Number 2. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15:2337–2340

    Google Scholar 

  • Levins, R. 1970. Extinction. In: M. Gesternhaber (ed) Some mathematical problems in biology. American Mathematical Society, Providence, RI, pp 77–107

    Google Scholar 

  • Lewis, W. H. 1980. Polyploidy: biological relevance. Plenum, New York

    Google Scholar 

  • Loew, S. S. 2002. Role of genetics in conservation biology. In: S. Ferson and M. Burgman (eds) Quantitative methods for conservation biology. Springer, New York, pp 226–258

    Google Scholar 

  • Losey, J. E., L. S. Raynor, and M. E. Carter. 1999. Transgenic pollen harms monarch larvae. Nature 399:214

    Article  PubMed  CAS  Google Scholar 

  • Louis, E. E. Jr., J. H. Ratsimbazafy, V. R. Razakamaharauo, D. J. Pierson, R. C. Barber, and R. A. Brenneman. 2005. Conservation genetics of black and white ruffed lemurs, Varecia variegata, from southeastern Madagascar. Animal Conservation 8:105–111

    Article  Google Scholar 

  • Lynch, M. 1996. A quantitative genetic perspective on conservation issues. In J. C. Avise and J. L. Hamrick (eds) Conservation genetics: case histories from nature. Chapman & Hall, New York, pp 471–501

    Google Scholar 

  • Madsen, T., R. Shine, M. Olsson, and H. Wittsell. 1999. Resto-ration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Mills, L. S., and P. E. Smouse. 1994. Demographic consequences of inbreeding in remnant populations. American Naturalist 144:412–431

    Article  Google Scholar 

  • Moore, N. W. 1962. The heaths of Dorset and their conservation. Journal of Ecology 50:369–391

    Article  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. American Naturalist 106:283–292

    Article  Google Scholar 

  • Novak, R. M. 1999. Red wolf Canis rufus. In: D. E. Wilson and S. Ruff (eds) The Smithsonian book of North American mammals. Smithsonian Institution Press, Washington, DC, pp 143–146

    Google Scholar 

  • O’Brien, S. J., D. E. Wildt, D. Goldman, C. R. Merril, and M. Bush. 1983. The cheetah is depauperate in genetic variation. Science 221:459–462

    Article  PubMed  Google Scholar 

  • O’Brien, S. J., M. E. Roelke, L. Marker, A. Newman, C. A. Winkler, D. Meltzer, L. Colly, J. F. Evermann, M. Bush, and D. E. Wildt. 1985. Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434

    Article  PubMed  Google Scholar 

  • O’Brien, S. J., M. E. Roelke, N. Yuhki, K. W Richards, W. E. Johnson, W. L. Franklin, A. E. Anderson, O. L. Bass Jr., R. C. Belden, and J. S. Martenson. 1990. Genetic introgression within the Florida panther Felis concolor coryi. National Geographic Research 6:485–494

    Google Scholar 

  • O’Brien, S. J. et al. 1996. Conservation genetics of the felidae. In: J. C. Avise and J. L. Hamrick (eds) Conservation genetics: case histories from nature. Chapman & Hall, New York, pp 50–74

    Google Scholar 

  • Packer, C, A. E. Pusey, H. Rowley, D. A. Gilbert, J. Martenson, and S. J. O’Brien. 1991. Case study of a bottleneck: lions of the Ngorongoro Crater. Conservation Biology 5:219–203

    Article  Google Scholar 

  • Pannell, J. R., and B. Charlesworth. 1999. Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonization. Evolution 53:664–676

    Article  Google Scholar 

  • Parker, I. M., R. P. Nakumura, and D. W. Schemske. 1995. Reproductive allocation and the fitness consequences of selfing in two sympatric species of Epilobium (Onagraceae) with contrasting mating systems. American Journal of Botany 82(8):1007–1016

    Article  Google Scholar 

  • Pico, F. X., N. J. Ouborg, and J. M. van Groenendael. 2004. Evaluation of the extent of among-family variation in inbreeding depression in the perennial herb Scabiosa columbaria (Dipsacaceae). American Journal of Botany 91:1183–1189

    Article  Google Scholar 

  • Ralls, K., and J. Ballou. 1983. Extinction: lessons from zoos. In: C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, and W. L. Thomas (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park, CA, pp 164–184

    Google Scholar 

  • Ralls, K., K. Brugger, and J. Ballou. 1979. Inbreeding and juvenile mortality in small populations of ungulates. Science 206:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Ralls, K., J. D. Ballou, and A. Templeton. 1988. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conservation Biology 2:185–193

    Article  Google Scholar 

  • Raven, P. H. 1979. A survey of reproductive biology in the Onagraceae. New Zealand Journal of Botany 17:575–593

    Google Scholar 

  • Reed, D. H., and R. Frankham. 2001. How closely correlated are molecular and quantitative measures of genetic diversity: a meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  • Reed, D. H., D. A. Briscoe, and R. Frankham. 2002. Inbreeding and extinction: effects of environmental stress and lineages. Conservation Genetics 3:301–307

    Article  CAS  Google Scholar 

  • Rhymer, J. A., and D. Simberloff. 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27:83–109

    Article  Google Scholar 

  • Roy, M. S., E. Geffen, D. Smith, E. Ostrander, and R. K. Wayne. 1994a. Patterns of differentiation and hybridization in North American wolf-like canids revealed by analysis of microsatellite loci. Molecular Biological Evolution 11:553–570

    CAS  Google Scholar 

  • Roy, M. S., D. J. Girman, and R. K. Wayne. 1994b. The use of museum specimens to reconstruct the genetic variability and relationships of extinct populations. Experimentia 50:551–557

    Article  CAS  Google Scholar 

  • Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, and J. G. Bishop. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Article  Google Scholar 

  • Sears, M. K., R. L. Hellmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Matilla, B. D. Siegfried, and G. P. Dively. 2001. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proceedings of the National Academy of Sciences 98:11937–11942

    Article  CAS  Google Scholar 

  • Shaffer, M. L. 1981. Minimum population sizes for species conservation. BioScience 31:131–134

    Article  Google Scholar 

  • Simberloff, D. 1988. The contribution of population and community biology to conservation science. Annual Review of Ecology and Systematics 19:473–571

    Article  Google Scholar 

  • Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local Extinction. Theoretical Population Biology 12:253–262

    Article  PubMed  CAS  Google Scholar 

  • Soulé, M. 1973. The epistasis cycle: a theory of marginal populations. Annual Review of Ecology and Systematics 4:165–187

    Article  Google Scholar 

  • Soulé, M, M. Gilpin, W. Conway, and T. Foose. 1986. The millenium ark: how long a voyage, how many staterooms, how many passengers? Zoo Biology 5:101–114

    Article  Google Scholar 

  • Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins, G. L. 1957. Self-fertilization and population variability in the higher plants. American Naturalist 91:337–354

    Article  Google Scholar 

  • Sullivan, R. M. 1996. Genetics, ecology, and conservation of montane populations of Colorado chipmunks (Tamias quadrivittatus). Journal of Mammalogy 77:951–975

    Article  Google Scholar 

  • Templeton, A. R. 1986. Coadaptation and outbreeding depression. In: M. E. Soulé (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, MA, pp 105–116

    Google Scholar 

  • Templeton, A. R., and B. Read. 1994. Inbreeding: one word, several meanings, much confusion. In: V. Leoschcke, J. Tomiuk, and S. K. Jain (eds) Conservation genetics. Birkhäuser Verlag, Basel, Switzerland, pp 91–105

    Google Scholar 

  • Triggs, S. J., M. J. Williams, S. J. Marshall, and G. K. Chambers. 1992. Genetic structure of the blue duck (Hymenolaimus malacorhynchos) populations revealed by DNA fingerprinting. Auk 109:80–89

    Google Scholar 

  • Van Dyke, F. 2002. Conservation biology: foundations, concepts, applications. McGraw-Hill, Boston, MA

    Google Scholar 

  • Van Oosterhout, C. V., W. G. Zijlstra, M. K. Van Heuven, and P. M. Brakefield. 2000. Inbreeding depression and genetic load in laboratory metapopulations of the butterfly Bicyclus anynana. Evolution 54:218–225

    PubMed  CAS  Google Scholar 

  • Vida, G.1994. Global issues of genetic diversity. In: V. Leoschcke, J. Tomiuk, and S. K. Jain (eds) Conservation genetics. Birkhäuser Verlag, Basel, Switzerland, pp 9–19

    Google Scholar 

  • Vrijenhoek, R. C.1994. Genetic diversity and fitness in small populations. In: V. Leoschcke, J. Tomiuk, and S. K. Jain (eds) Conservation genetics. Birkhäuser Verlag, Basel, Switzerland, pp 37–53

    Google Scholar 

  • Wade, M. J. 1996. Adaptation in subdivided populations: kin selection and interdemic selection. In: M. R. Rose and G. V. Lauder (eds) Adaptation. Sinauer, Sunderland, MA, pp 381–405

    Google Scholar 

  • Wade, M. J., and C. J. Goodnight. 1998. Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52:1537–1553

    Article  Google Scholar 

  • Wade, M. J., and D. E. McCauley. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  • Walter, H. S. 1990. Small viable population: the red-tailed hawk of Socorro Island. Conservation Biology 4:441–443

    Article  Google Scholar 

  • Wayne, R. K. 1996. Conservation genetics in the Canidae. In: J. C. Avise and J. L. Hamrick (eds) Conservation genetics: case histories from nature. Chapman & Hall, New York, pp 75–118

    Google Scholar 

  • Wayne, R. K., and S. M. Jenks. 1991. Mitochondrial DNA analysis supports extensive hybridization of the endangered red wolf (Canis rufus). Nature 351:565–568

    Article  CAS  Google Scholar 

  • Whitham, T. G., G. D. Martinsen, K. D. Floate, H. S. Dungley, B. M. Potts, and P. Keim. 1999. Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80:416–428

    Article  Google Scholar 

  • Woodworth, L. M., M. E. Montgomery, R. K. Nurthen, D. A. Briscoe, and R. Frankham. 1994. Modeling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes. Molecular Ecology 3:393–399

    Article  PubMed  CAS  Google Scholar 

  • Wright, S. 1931. Evolution and Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Young, A. G., and A. H. D. Brown. 1999. Paternal bottlenecks in fragmented populations of the endangered grassland daisy Rutidosis leptorrhynchoides. Genetical Research 73:111–117

    Article  Google Scholar 

  • Zhang, Y., X. Wang, O. A. Ryder, H. Li, H. Zhang, Y. Yong, and P. Wang. 2002. Genetic diversity and conservation of endangered animal species. Pure and Applied Chemistry 74:575–584

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Genetic Diversity – Understanding Conservation at Genetic Levels. In: Conservation Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6891-1_6

Download citation

Publish with us

Policies and ethics