Advertisement

The performance constraints of transistors define fundamental circuit limitations. For example, by relating circuit performance to widely accepted technology parameters one can predict the impact of a new technology on applications. This chapter reviews device metrics that will be used for circuit design in the rest of this book. The metric that is most widely used for the evaluation of an IC process is f T, representing the transition frequency or unity current gain bandwidth of the transistors. The f T can be used to estimate the gain-bandwidth product of a basic amplifier circuit as shown in Fig. 3.1a.

In this chapter, definitions and comparisons focus on bipolar npn transistors. The results are applicable to widely used bipolar IC processes such as Si, SiGe, SiGe:C, GaAs HBT and InP HBT. Since the focus of this book is on high bit-rate and (mainly) large-signal circuits, noise and distortion of transistors are not analysed.

Keywords

Power Gain Base Resistance Current Gain Differential Pair Substrate Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Miller, “Dependence of the input impedance of a three-electrode vacuum tube upon the load in the plate circuit,” Scientific Papers of the U.S. National Bureau of Standards, vol. 15 (351),1920, pp. 367-386.Google Scholar
  2. 2.
    W.J. Kloosterman, J.C.J. Paasschens, D.B.M. Klaassen, “Improved extraction of base and emitter resistance from small signal high frequency admittance measurements,” in Proc. IEEE BCTM, 1999, pp. 93-96.Google Scholar
  3. 3.
    P.A.H. Hart (ed.), Bipolar and bipolar-MOS integration, Section 3.10 by G.A.M. Hurkx, Elsevier, 1994, ISBN 0-444-81510-4.Google Scholar
  4. 4.
    J.M. Rollet, “Stability and power-gain invariants of linear two-ports,” IRE Trans. Circuit The-ory, CT-9:29-32, 1962.Google Scholar
  5. 5.
    P. Wennekers, R. Reuter, “SiGe technology requirements for millimeter-wave applications,” in Proc. IEEE BCTM, 2004, pp. 79-83.Google Scholar
  6. 6.
    K. Washio, E. Ohue, et al., “A 0.2-µm 180-GHz-fMAX 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications,” IEEE Trans. Electron Devices, vol. 49, No. 2, February 2002, pp. 271-278.CrossRefGoogle Scholar
  7. 7.
    T. Hashimoto, Y. Nonaka, et al., “Integration of a 0.13-µm CMOS and a high performance self-aligned SiGe HBT featuring low base resistance,” in Proc. IEDM, 2002, pp. 779-782.Google Scholar
  8. 8.
    P. Deixler, R. Colclaser, et al., “QUBiC4G: a fT /fmax = 70/100GHz 0.25µm low power SiGe-BiCMOS production technology with high quality passives for 12.5Gb/s optical networking and emerging wireless applications up to 20GHz,” in Proc. IEEE BCTM, 2002, pp. 201-204.Google Scholar
  9. 9.
    A. Pruijmboom, D. Szmyd, R. Brock, R. Wall, N. Morris, K. Fong, F. Jovenin, “QUBiC3: a 0.5µm BiCMOS production technology, with fT = 30GHz, fmax = 60GHz and high-quality passive components for wireless telecommunication applications,” in Proc. IEEE BCTM, 1998, pp. 120-123.Google Scholar
  10. 10.
    D. Szmyd, R. Brock, N. Bell, S. Harker, G. Patrizi, J. Fraser, R. Dondero, “QUBiC4: a Silicon-RF BiCMOS technology for wireless communication ICs,” in Proc. IEEE BCTM, 2001, pp. 60-63.Google Scholar
  11. 11.
    P. Deixler, A. Rodriguez, et al., “QUBiC4X: an fT /fmax = 130/140GHz SiGe:C-BiCMOS manufacturing technology with elite passives for emerging microwave applications,” in Proc. IEEE BCTM, 2004, pp. 233-236.Google Scholar
  12. 12.
    L. Lanzerotti, N. Feilchenfeld, et al., “A low complexity 0.13 µm SiGe BiCMOS technology for wireless and mixed signal applications,” in Proc. IEEE BCTM 2004, pp. 237-240.Google Scholar
  13. 13.
    D. Knoll, B. Heinemann, et al., “A modular, low-cost SiGe:C BiCMOS process featuring high-fT and high-BVCEO transistors,” in Proc. IEEE BCTM, 2004, pp. 241-244.Google Scholar
  14. 14.
    S. Subbanna, L. Larson, et al., “Silicon-germanium BICMOS technology and a CAD environ-ment for 2-40 GHz VLSI Mixed-Signal ICs,” in Proc. IEEE CICC, 2001, pp. 559-566.Google Scholar
  15. 15.
    A. Joseph, D. Coolbaugh, et al., “A 0.18µm BiCMOS technology featuring 120/100 GHz (fT /fMAX ) HBT and ASIC-compatible CMOS using copper interconnect,” in Proc. IEEE BCTM, 2001, pp. 143-146.Google Scholar
  16. 16.
    B.A. Orner, Q.Z. Liu, et al., “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proc. IEEE BCTM, 2003, pp. 203-207.Google Scholar
  17. 17.
    B. Jagannathan, M. Khater, et al., “Self-aligned SiGe NPN transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, No. 5, May 2002, pp. 258-260.CrossRefGoogle Scholar
  18. 18.
    .J.-S. Rieh, B. Jagannathan, et al., “SiGe HBTs with cut-off frequency of 350GHz,” in Proc. IEDM, 2002, pp. 771-774.Google Scholar
  19. 19.
    A. Chantre, M. Marty, et al., “A high performance low complexity SiGe HBT for BiCMOS integration,” in Proc. IEEE BCTM, 1998, pp. 93-96.Google Scholar
  20. 20.
    H. Baudry, B. Martinet, et al., “High performance 0.25µm SiGe and SiGe:C HBTs using non selective epitaxy,” in Proc. IEEE BCTM, 2001, pp. 52-55.Google Scholar
  21. 21.
    H. Baudry, B. Szelag, et al., “BiCMOS7RF: a highly-manufacturable 0.25-µm BiCMOS RF-applications-dedicated technology using non-selective SiGe:C epitaxy,” in Proc. IEEE BCTM, 2003.Google Scholar
  22. 22.
    .M. Laurens, B. Martinet, et al., “A 150GHz fT /fmax 0.13 µm SiGe:C BiCMOS technology,” in Proc. IEEE BCTM, 2003.Google Scholar
  23. 23.
    D. Knoll, K.E. Ehwald, et al., “A flexible, low-cost, high performance SiGe:C BiCMOS pro-cess with a one-mask HBT module,” in Proc. IEDM, 2002, pp. 783-786.Google Scholar
  24. 24.
    H. R ücker, B. Heinemann, et al., “SiGe:C BiCMOS technology with 3.6 ps gate delay,” in Proc. IEDM, 2003, pp. 121-124.Google Scholar
  25. 25.
    .J. B öck, H. Sch äfer, K. Aufinger, et al., “SiGe bipolar technology for automotive radar appli- cations,” in Proc. IEEE BCTM, 2004, pp. 84-87.Google Scholar
  26. 26.
    P. Andre, J. Benchimol, et al., “InP DHBT technology and design methodology for high-bit-rate optical communications circuits,” IEEE J. Solid-State Circuits, vol. 33, No. 9, September 1998, pp. 1328-1334.CrossRefGoogle Scholar
  27. 27.
    N.X. Nguyen, J. Fierro, G. Peng, A. Ly and C. Nguyen, “Manufacturable commercial 4-inch InP HBT device technology,” in Proc. GaAs MANTECH, 2002.Google Scholar
  28. 28.
    .M. Sokolich, “High Speed, low power, optoelectronic InP-based HBT integrated circuits,” in Proc. CICC, 2002, pp. 483-490.Google Scholar
  29. 29.
    J.-S. Rieh, D. Greenberg, B. Jagannathan, G. Freeman, S. Subbanna, “Measurement and mod-eling of thermal resistance of high speed SiGe heterojunction bipolar transistors,” in Proc. Silicon Monolithic ICs in RF Systems, 2001, pp. 110-113.Google Scholar
  30. 30.
    D.J. Walkey, T.J. Smy, D. Marchesan, H. Tran, C. Reimer, T.C. Kleckner, M.K. Jackson, M. Schr öter, J.R. Long, “Extraction and modelling of thermal behaviour in trench isolated bipolar structures,” in Proc. IEEE BCTM, 1999, pp. 97-100.Google Scholar
  31. 31.
    D.J. Walkey, D. Celo, T.J. Smy, “A Simplified model for the effect of interfinger metal on maximum temperature rise in a multifinger bipolar transistor,” IEEE Trans. Computer-Aided Design, vol. 22, No. 1, January 2003, pp. 15-25.CrossRefGoogle Scholar
  32. 32.
    E. Aksen, “On-glass process option for BiCMOS technology,” in Proc. IEEE BCTM, 2004, pp. 64-67.Google Scholar
  33. 33.
    M. Pfost, P. Brenner, R. Lachner, “Investigation of advanced SiGe heterojunction bipolar tran-sistors at high power densities,” in Proc. IEEE BCTM, 2004, pp. 100-103.Google Scholar
  34. 34.
    W. De Cock, M. Steyaert, A 2.5V, “10GHz fully integrated LC-VCO with integrated high-Q inductor and 30% tuning range,” Analog Integrated Circuits and Signal Processing, vol. 33, No. 2, November 2002, pp. 137-144.CrossRefGoogle Scholar
  35. 35.
    B. Kleveland, C.H. Diaz, et al., “Exploiting CMOS Reverse Interconnect Scaling in Multigiga-hertz Amplifier and Oscillator Design,” IEEE J. Solid-State Circuits, vol. 36, No. 10, October 2001, pp. 1480-1488.CrossRefGoogle Scholar
  36. 36.
    L.F. Tiemeijer, R.J. Havens, R. de Kort, Y. Bouttement, P. Deixler, M. Ryczek, “Predictive spiral inductor compact model for frequency and time domain,” in Proc. IEDM, 2003.Google Scholar
  37. 37.
    E.O. Johnson, “Physical limitations on frequency and power parameters of transistors,” RCA Rev., vol. 26, p. 163, 1965.Google Scholar
  38. 38.
    W. Steiner, H.-M. Rein, J. Berntgen, “Experimental verification of substrate coupling in a high-gain 30 Gb/s SiGe amplifier,” in Proc. IEEE BCTM, 2004, pp. 273-276.Google Scholar
  39. 39.
    G.A.M. Hurkx, P. Agarwal, R. Dekker, E. van der Heijden and H. Veenstra, “RF figures-of-merit for process optimisation,” IEEE Trans. Electron Devices, vol. 51, No. 12, December 2004, pp. 2121-2128.CrossRefGoogle Scholar
  40. 40.
    H. Veenstra, E. van der Heijden, “A 19-23 GHz integrated LC-VCO in a production 70 GHz fT SiGe technology,” in Proc. ESSCIRC, 2003, pp. 349-352.Google Scholar
  41. 41.
    H. Veenstra, G.A.M. Hurkx, E. v.d. Heijden, C. Vaucher, M. Apostolidou, D. Jeurissen, P. Deixler, “10-40GHz design in SiGe-BiCMOS and Si-CMOS - linking technology and circuits to maximize performance,” in Proc. European Microwave Week, 2005.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Personalised recommendations