Skip to main content

Part of the book series: Analog Circuits And Signal Processing Series ((ACSP))

  • 1123 Accesses

The advance of modern IC processes has supported increasing bit-rates in many consumer and professional applications, such as hard disk drives and optical networking. Achieving a higher bit-rate by applying a new generation of an IC process for analog circuits and systems is not a simple matter of scaling existing solutions. The reduced feature size of new generations of IC technology drives the improvement of high-frequency performance of transistors and passive elements, but at the same time requires a reduction of supply voltages. This poses significant challenges to the design of high-frequency building blocks. Example applications that highlight these challenges are transceivers and cross-connect switch ICs for optical networking.

In optical networks, bit-rates in the physical layer have increased over the past two decades from 155 Mb/s to approximately 40 Gb/s (see Fig. 1.1).

Network capacity is being increased by two technologies simultaneously. One is higher data processing speeds and electronic time division multiplexing (ETDM), which drives the increase of bit-rates. The second is wavelength division multiplexing (WDM), which allows the use of multiple independent data streams per fibre, each assigned a different colour and thereby multiplying the data transmission capacity per fibre by the number of colours used. The WDM technique will not be further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Mochida, N. Yamaguchi, G. Ishikawa, “Technology-oriented review and vision of 40-Gb/s-based optical transport networks,” J. Lightwave Technol., vol. 20, No. 12, December 2002.

    Google Scholar 

  2. M. Kuznetsov, N.M Froberg, et al., “A next-generation optical regional access network,” IEEE Commun. Magazine, pp. 66-72, January 2000.

    Google Scholar 

  3. T. Brenner, H. Preisach, B. Wedding, “Wired data communication; evolution and impact on semiconductor technologies,” in Proc. IEEE BCTM, 2000, pp. 150-156.

    Google Scholar 

  4. B. Jagannathan, M. Khater, et al., “Self-aligned SiGe NPN transistors with 285 GHz fMAX and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, No. 5, May 2002, pp. 258-260.

    Article  Google Scholar 

  5. R. Takeyari, K. Watanabe, et al., “Fully monolithically integrated 40-Gbit/s transmitter and receiver,” in Proc. OFC, 2001, pp. WO-1-WO-3.

    Google Scholar 

  6. J. Hauenschild, C. Dorschky, T. Winkler bon Mohrenfels, R. Seitz, “A plastic packaged 10 Gb/s BiCMOS clock and data recovering 1:4-demultiplexer with external VCO,” IEEE J. Solid-State Circuits, vol. 31, No. 12, December 1996, pp. 2056-2059.

    Article  Google Scholar 

  7. B. Lai, R. Walker, “A Monolithic 622 Mb/s clock extraction data retiming circuit,” ISSCC Dig. Tech. Papers, February 1991, pp. 144-145.

    Google Scholar 

  8. J. Lee, B. Razavi, “A 40Gb/s clock and data recovery circuit in 0.18 µm CMOS technology,” ISSCC Dig. Tech. Papers, 2003, pp. 242-244.

    Google Scholar 

  9. [Online]. Available: http://www.tektronix.com/Measurement/App Notes/SONET

  10. K.S. Lowe, “Bufferless broadcasting: a low power distributed circuit technique for broadcast- ing 10-Gb/s chip input signals,” IEEE J. Solid-State Circuits, vol. 32, No. 10, October 1997, pp. 1551-1555.

    Article  Google Scholar 

  11. M. Sokolich, C.H. Fields, et al.,“A Low-Power 72.8-GHz static frequency divider in AlInAs/InGaAs HBT technology,” IEEE J. Solid-State Circuits, vol. 36, No. 9, September 2001, pp. 1328-1334.

    Article  Google Scholar 

  12. P.A.H. Hart (ed.), Bipolar and bipolar-MOS integration, Elsevier, 1994.

    Google Scholar 

  13. M. Sunazawa, T. Hani, “Low-power crosspoint switch matrix for space-division digital- switching network,” ISSCC Dig. Tech. Papers, 1974, pp. 206-207.

    Google Scholar 

  14. H. Shin, J. Warnock et al., “A 5Gb/s 16 × 16 Si-bipolar crosspoint switch,” ISSCC Dig. Tech. Papers, 1992, pp. 128-129.

    Google Scholar 

  15. A.G. Metzger, C.E. Chang, et al., “A 10Gb/s 12 × 12 cross-point switch implemented with AlGaAs/GaAs heterojunction bipolar transistors,” in Proc. GaAs IC Symp., October 1997, pp. 109-112.

    Google Scholar 

  16. K.S. Lowe, “A GaAs HBT 16 × 16 10-Gb/s/channel crosspoint switch,” IEEE J. Solid-State Circuits, vol. 32, No. 8, August 1997, pp. 1263-1268.

    Article  MathSciNet  Google Scholar 

  17. H.-M. Rein, M. Moller, “Design considerations for very-high-speed Si-bipolar IC’s operating up to 50 Gb/s, IEEE J. Solid State Circuits, vol.17, No.8, August 1996, pp. 1076-1090.

    Article  Google Scholar 

  18. B. Kleveland, X. Qi, et al., “High-frequency characterisation of on-chip digital interconnects,” IEEE J. Solid-State Circuits, vol. 37, No. 6, June 2002, pp. 716-725.

    Article  Google Scholar 

  19. M. Mokhtari, B. Kerzar, et al., “A 2V 120mA 25Gb/s 2 × 2 crosspoint switch in inP-HBT technology,” ISSCC Dig. Tech. Papers, February 1998, pp. 204-205.

    Google Scholar 

  20. O. Kromat, U Langmann, G. Hanke, W.J. Hillery, “A 10-Gb/s silicon bipolar IC for PRBS testing,” IEEE J. Solid State Circuits, vol. 33, No. 1, January 1998, pp. 76-85.

    Article  Google Scholar 

  21. H. Veenstra, P. Barr é , et al., “A 20-Input 20-Output 12.5Gb/s SiGe cross-point switch with less than 2ps RMS jitter,” ISSCC Dig. Tech. Papers, 2003, pp. 174-175.

    Google Scholar 

  22. P. Deixler, R. Colclaser, et al., “QUBiC4G: a fT /fmax = 70/100GHz 0.25 µm low power SiGe-BiCMOS production technology with high quality passives for 12.5Gb/s optical networking and emerging wireless applications up to 20GHz,” in Proc. IEEE BCTM, 2002, pp. 201-204.

    Google Scholar 

  23. R. Wanner, G.R. Olbrich, “A hybrid fabricated 40 GHz low phase noise SiGe push-push os-cillator,” in Proc. Silicon Monolithic Integrated Circuits in RF Systems, 2003, pp. 72-75.

    Google Scholar 

  24. A. Kurdoghlian, M. Mokhtari, et al., “40 GHz fully integrated and differential monolithic VCO with wide tuning range in AlInAs/InGaAs HBT,” in Proc. GaAs IC Symp, 2001, pp. 129-132.

    Google Scholar 

  25. P. Baltus, A. Wagemans, R. Dekker, A. Hoogstrate, H. Maas, A. Tombeur, J. van Sinderen, “A 3.5-mW, 2.5-GHz diversity receiver and a 1.2-mW 3.6-GHz VCO in silicon on anything,” IEEE J. Solid-State Circuits, vol. 33, No. 12, December 1998, pp. 2074-2079.

    Article  Google Scholar 

  26. H. Li, H.-M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE J. Solid-State Circuits, vol. 38, No. 2, February 2003, pp. 184-191.

    Article  Google Scholar 

  27. S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, A.L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, No. 1, January 2003.

    Google Scholar 

  28. W. De Cock, M.J.S. Steyaert, A 2.5 V, “10 GHz fully integrated LC-VCO with integrated high-Q inductor and 30% tuning range,” Analog Integrated Circuits and Signal Processing, vol. 33, No. 2, November 2002, pp. 137-144.

    Article  Google Scholar 

  29. J.-S. Rieh, B. Jagannathan, et al., “SiGe HBTs with cut-off frequency of 350 GHz,” in Proc. IEDM, 2002, pp. 771-774.

    Google Scholar 

  30. R.D. Thornton, D. de Witt, P.E. Grae, E.R. Chenette, Characteristics and limitations of tran- sistors, Section 1.6, Wiley, New York, 1966.

    Google Scholar 

  31. G. Freeman, M. Meghelli, “40-Gb/s Circuits built from a 120-GHz fT SiGe technology,” IEEE J. Solid-State Circuits, vol. 37, No. 9, September 2002, pp. 1106-1114.

    Article  Google Scholar 

  32. A. Ong, S. Benyamin, et al., “A 40-43Gb/s clock and data recovery IC with integrated SFI-5 1:16 demultiplexer in SiGe technology,” ISSCC Dig. Tech. Papers, 2003, pp. 234-235.

    Google Scholar 

  33. H. Troy Nagle, S.C. Roy et al., “Design for testability and built-in self test: a review,” IEEE Trans. Ind. Electron., vol. 36, No. 2, May 1989, pp. 129-140.

    Article  Google Scholar 

  34. [Online]. Available: http://www.mindspeed.com/web/products/index.jsp?catalog id=16& cookietrail=0,1

  35. M.G. Chen, J.K. Notthoff, “A 3.3-V 21-Gb/s PRBS generator in AlGaAs/GaAs HBT technol-ogy, IEEE J. Solid State Circuits, vol. 35, No. 9, September 2000, pp. 1266-1270.

    Google Scholar 

  36. F. Schumann, J. Bock, “Silicon bipolar IC for PRBS testing generates adjustable bit rates up to 25 Gbit/s,” Electronics Letters, November 1997, pp. 2022-2023.

    Google Scholar 

  37. H. Knapp, M. Wurzer, T. Meister, J. Bock, K. Aufinger, “40 Gbit/s 27 − 1 PRBS generator IC in SiGe bipolar technology,” in Proc. IEEE BCTM, 2002, pp. 124-127.

    Google Scholar 

  38. E.O. Johnson, “Physical limitations on frequency and power parameters of transistors,” RCA Rev., vol. 26, 1965, p. 163.

    Google Scholar 

  39. K.K. Ng, M.R. Frei, C.A. King, “Reevaluation of the ftBVceo limit on Si bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, No. 8, August 1998, pp. 1854-1855.

    Article  Google Scholar 

  40. A. Maxim, “A 10 GHz SiGe OC192 frequency synthesizer using a passive feed-forward loop filter and a half rate oscillator,” in Proc. ESSCIRC 2004, pp. 363-366.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). The Challenge. In: Circuit and Interconnect Design for RF and High Bit-Rate Applications. Analog Circuits And Signal Processing Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6884-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6884-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6882-9

  • Online ISBN: 978-1-4020-6884-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics