Skip to main content

Impacts of Heat and Ozone on Mortality Risk in the New York City Metropolitan Region Under a Changing Climate

  • Chapter
Seasonal Forecasts, Climatic Change and Human Health

Part of the book series: Advances in Global Change Research ((AGLO,volume 30))

Abstract

Climate change may lead to both increased heat and ozone (O3) levels in urban areas over the coming century. To assess potential human health impacts of these changes, models are needed for projecting regional-scale temperature and O3 changes under climate change, and for characterizing the independent and joint health effects of heat and O3. To meet these needs, mortality transfer functions for summer heat and O3 were developed and applied in a regional health risk assessment for the New York City metropolitan region. The objective was to analyze and project the relative impacts of climate-related changes in mean daily temperature and 1-hour maximum O3 concentrations on acute non-accidental mortality from all internal causes of death. Exposure-response relationships were developed using a 10-year record of daily summer observations for the region (1990–1999). This was done using a time series Poisson regression model that jointly estimated O3 and temperature effects on mortality, controlling for time trends and day of week effects. To project impacts into future decades, we developed a integrated modeling system that took global scale climate projections for the 2020s, 2050s, and 2080s, using the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 emission scenario assumptions, and down-scaled these to a 36 km grid using regional models for climate and air quality. Regional downscaling was carried out using the GISS-MM5 linked global-regional model system for climate and the Community Multiscale Air Quality (CMAQ) model for air quality. Mortality risks were projected using the transfer functions estimated from the 1990s data. Results showed that both O3 and heat stress had measurable impacts on mortality risk, but that the relative impacts changed over time. This modeling strategy could be applied in other metropolitan areas and for other health outcomes to assess health impacts of heat and O3 under a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basu R, Samet JM. 2002. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202.

    Article  PubMed  Google Scholar 

  • Basu R, Dominici F, Samet JM. 2005. Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods. Epidemiology 16:58–66.

    Article  PubMed  Google Scholar 

  • Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F. 2004. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 292:2372–2378.

    Article  CAS  PubMed  Google Scholar 

  • Bell ML, Dominici F, Samet JM. 2005. A meta-analysis of time-series studies of ozone and mortality with comparison to the National Morbidity, Mortality, and Air Pollution Study. Epidemiology 16:436–445.

    Article  PubMed  Google Scholar 

  • Byun DW, Ching JKS (eds.). 1999. Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. EPA/600/R-99/030, US Environmental Protection Agency, Office of Research and Development, Washington, DC 20460.

    Google Scholar 

  • Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. 2002. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155: 80–87.

    Article  PubMed  Google Scholar 

  • Curriero FC, Samet JM, Zeger SL. 2003. Re: “On the use of generalized additive models in time-series studies of air pollution and health” and “Temperature and mortality in 11 cities of the eastern United States” (Letter to the Editor). Am J Epidemiol 158:93–94.

    Article  PubMed  Google Scholar 

  • Dudhia J. 1993. A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121:1493–1513.

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer D. 1994. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note, 138 pp., TN-398 + STR, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Hansen J, Sato M, Nazarenko L, Ruedy R, Lacis A, Hall T, Shindell D, Santer B, Stone P, Novakov T, Thomason L, Wang R, Wang Y, Jacob D, Hollandsworth S, Bishop L, Logan J, Thompson A, Stolarski R, Lean J, Willson R, Levitus S, Antonov J, Rayner N, Parker D, Christy J. 2002. Climate forcing in Goddard Institute for Space Studies SI2000 simulations. J Geophys Res-Atmos 107:4347, doi:10.1029/2001JD001143].

    Article  Google Scholar 

  • Hajat S, Kovats RS, Atkinson RW, Haines A. 2002. Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372.

    Article  CAS  PubMed  Google Scholar 

  • Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH. 2004. Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci USA 101(34):12422–12427 (August 24, 2004), www.pnas.org/cgi/doi/10.1073/pnas.0404500101

    Google Scholar 

  • Hogrefe C, Lynn B, Civerolo K, Ku J-Y, Rosenthal J, Rosenzweig C, Goldberg R, Gaffin S, Knowlton K, Kinney PL. 2004a. Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J Geophys Res 109, D22301, doi:10.1029/2004JD004690.

    Article  Google Scholar 

  • Hogrefe C, Biswas J, Lynn B, Civerolo K, Ku J-Y, Rosenthal J, Rosenzweig C, Goldberg R, Kinney PL. 2004b. Simulating regional-scale ozone climatology over the eastern United States: model evaluation results. Atmos Env 38:2627–2638.

    Article  CAS  Google Scholar 

  • Houynoux MR, Vukovich JM, Coats Jr., CJ, Wheeler NJM, Kasibhatta P. 2000. Emission inventory development and processing for the seasonal model for regional air quality. J Geophys Res-Atmos 105:9079–9090.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) 2000. Special Report on Emissions Scenarios (SRES). Nakicenovic N, Swart R (eds.). Cambridge University Press, Cambridge, 612 pp.

    Google Scholar 

  • Ito K, DeLeon SF, Lippmann M. 2005. Associations between ozone and daily mortality: analysis and meta-analysis. Epidemiology 16:446–457.

    Article  PubMed  Google Scholar 

  • Katsouyanni K, Pantazopoulou A, Touloumi G, Tselepidaki I, Moustris K, Asimakopoulous D, Poulopoulou G, Trichopoulous D. 1993. Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Arch Environ Health 48:235–242.

    CAS  PubMed  Google Scholar 

  • Kinney PL, Rosenthal JE, Rosenzweig C, Hogrefe C, Solecki W, Knowlton K, Small C, Lynn B, Civerolo K, Ku J-Y, Goldberg R, Oliveri C. 2006. Assessing potential public health impacts of changing climate and land uses: the New York Climate and Health Project. In: Ruth M, Donaghy K, Kirshen P (eds.), Regional Climate Change and Variability: Impacts and Responses. Cheltenham/Northampton, MA: Edward Elgar, pp. 161–189.

    Google Scholar 

  • Kinney PL, Ozkaynak H. 1991. Associations of daily mortality and air pollution in Los Angeles County. Environ Res 54:99–120.

    Article  CAS  PubMed  Google Scholar 

  • Kinney PL, Knowlton K, Hogrefe C. 2005. Ozone: Kinney et al. Respond to Schwarty J, Michacls P, Davis RE, Ozone: Unrealistic scenarios. Environ Health Perspect 113:A86–87.

    Google Scholar 

  • Kleinman LI, Lipfert FW. 1996. Metropolitan New York in the Greenhouse: Air Quality and Health. In: Hill D (ed.), The Baked Apple? Metropolitan New York in the Greenhouse Ann NY Acad Sci 790:91–110.

    Google Scholar 

  • Knowlton K, Rosenthal JE, Hogrefe C, Lynn B, Gaffin S, Goldberg R, Rosenzweig C, Civerolo K, Ku J-Y, Kinney PL. 2004. Assessing ozone-related health impacts under a changing climate. Environ Health Perspect 112:1557–1563.

    CAS  PubMed  Google Scholar 

  • Levy JI, Chemerynski SM, Sarnat JA. 2005. Ozone exposure and mortality: an empiric Bayes metaregression analysis. Epidemiology 16:458–468.

    Article  PubMed  Google Scholar 

  • Lynn BH, Druyan L, Hogrefe C, Dudhia J, Rosenzweig C, Goldberg R, Rind D, Healy R, Rosenthal J, Kinney PL. 2004. On the sensitivity of present and future surface temperatures to precipitation characteristics. Climate Res 28:53–65.

    Article  Google Scholar 

  • Lynn BH, Rosenzweig C, Goldberg R, Hogrefe C, Rind D, Healy R, Dudhia J, Biswas J, Druyan L, Rosenthal J, Kinney PL. 2006. The GISS-MM5 regional climate modeling system. Part I: Sensitivity of simulated current and future climate to model configuration. J Appl Meteorol (in revision).

    Google Scholar 

  • O’Neill MS, Zanobetti A, Schwartz J. 2003. Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157:1074–1082.

    Article  PubMed  Google Scholar 

  • O’Neill MS, Zanobetti A, Schwartz J. 2005. Disparities by race in heat-related mortality in four US cities: the role of air conditioning prevalence. J Urban Health 82:191–197.

    PubMed  Google Scholar 

  • Russell GL, Miller JR, Rind D. 1995. A coupled atmosphere-ocean model for transient climate change studies. Atmos-Ocean 33:683–730.

    Google Scholar 

  • SAS Institute. 2002. SAS System 9 for Windows. Cary, NC: SAS Institute.

    Google Scholar 

  • Seinfeld JH, Pandis SN. 1998. Atmospheric Chemistry and Physics: From Air Pollution To Climate Change. New York: Wiley.

    Google Scholar 

  • Semenza JC, Rubin CH, Falter KH, Selaniko JD, Flanders WD, Howe HL, Wilhelm JL. 1996. Heat-related death during the July 1995 heat wave in Chicago. New Engl J Med 335: 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Thurston GD, Ito K. 2001. Epidemiological studies of acute ozone exposures and mortality. J Exp Anal Environ Epidemiol 11:286–294.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA). 1997. The benefits and costs of the Clean Air Act: 1970–1990 (EPA 410-R-97–002) [http://www.epa.gov/air/sect812/copy.html] (Appendix I).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Knowlton, K., Hogrefe, C., Lynn, B., Rosenzweig, C., Rosenthal, J., Kinney, P.L. (2008). Impacts of Heat and Ozone on Mortality Risk in the New York City Metropolitan Region Under a Changing Climate. In: Thomson, M.C., Garcia-Herrera, R., Beniston, M. (eds) Seasonal Forecasts, Climatic Change and Human Health. Advances in Global Change Research, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6877-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6877-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6876-8

  • Online ISBN: 978-1-4020-6877-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics