The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany

  • Christian Huber
  • Caroline Schulze
  • Manuela Baumgarten
Part of the Topics in Biodiversity and Conservation book series (TOBC, volume 7)


The early effects of femel-cutting (removing 20% of the trees) and small scale clear-cutting on ground-living spiders in a Norway spruce (Picea abies (L.) Karst.) forest in Southern Germany were investigated. The study was carried out as BACIP (before and after, control-impact, many paired samplings) study: Spiders were sampled during the pre-treatment year, the year of cutting, and the year after cutting. In total 7101 individuals were sampled, of which 4530 individuals were identified, 4468 were adult and 2633 individuals were juvenile. We identified 107 species, but a single species, Coelotes terrestris, dominated the control (spruce stand) comprising up to 49% of the total identified individuals. Clear-cutting changed the species composition in the traps, while the first step in femel-cutting preserved it. The number of individuals of the families Linyphiidae, Amaurobiidae, Agelenidae and Clubionidae decreased drastically within the 2 years after the clear-cutting, while the Lycosidae became numerically dominant in the clear-cut stands. The number of individuals with the following characterisation decreased significantly after clear-cutting: Small (<3.0 mm) and large spiders (>10.5 mm), web builders, ‘forest habitat species’, species favouring hygrophilic to medium moisture conditions, and preferences to live below ground or in and on the moss layer. On the other hand, middle-sized spiders, free hunters, ‘open habitat species’, spiders favouring dry conditions or that are euryoecious, preferring patterns covered by grasses or uncovered patches, increased in number. Clear-cut habitats with dense spruce regeneration showed a delayed and less pronounced response. With femel-cutting, species composition of ground-living spider communities may be preserved during the first step of regeneration of mature forest stands.


BACIP Clear-cutting Forest management Höglwald Selective-cutting Species assemblage Species-environment relationship Spiders Spruce 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous 2004. Erfolgreich mit der Natur. Ergebnisse der zweiten Bundeswaldinventur in Bayern. – Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF).
  2. Altegrim O. and Sjöberg K. (2004). Selective felling as a potential tool for maintaining biodiversity in managed forests. Biodivers. Conserv. 13: 1123–1133CrossRefGoogle Scholar
  3. Altegrim O. and Sjöberg K. (1995). Effects of clear-cutting and selective felling to Swedish Boreal coniferous forest: response of invertebrate taxa eaten by birds. Entomol. Fennica 6: 79–90Google Scholar
  4. Bennett L.T. and Adams M.A. (2004). Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41:585–598CrossRefGoogle Scholar
  5. Blick T. and Scheidler M. (2003). Rote Liste gefährdeter Spinnen (Arachnida: Araneae) Bayerns. Bayerische Landesamt für Umweltschutz 166: 308–321Google Scholar
  6. Brand C., Höfer H. and Beck L. (1994). Zur Biologie eines Buchenwaldbodens, 16. Die Spinnenassoziation einer Windbruchfläche. Carolinea 52: 61–74Google Scholar
  7. Buddle C.M., Spence J.R. and Langor D.W. (2000). Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23:424–436CrossRefGoogle Scholar
  8. Bultman T.L., Uetz G.W. and Brady A.R. (1982). A comparison of cursorial spider communities along a successional gradient. J. Arachnol. 10:23–33Google Scholar
  9. Butterbach-Bahl K., Gasche R., Huber C., Kreutzer K. and Papen H. (1998). Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmos. Environ. 32:559–564CrossRefGoogle Scholar
  10. Coyle F.A. (1981). Effects of clearcutting on the spider community of a southern Appalachian forest. J. Arachnol. 9:85–298Google Scholar
  11. Curry S.J., Humphreys W.F., Koch L.E. and Main B.Y. (1985). Changes in arachnid communities resulting from forestry practices in Karri Forest, south-west Western-Australia. Austr. Forest Res. 15:469–480Google Scholar
  12. Curtis D.J. (1980). Pitfalls in spider community studies (Arachnidae, Aranae). J. Arachnol. 8:271–280Google Scholar
  13. Docherty M. and Leather S.R. (1997). Structure and abundance of arachnid communities in Scots and lodgepole pine plantations. For. Ecol. Manage 95:197–207CrossRefGoogle Scholar
  14. Duffey E. (1978). Ecological strategies in spiders including some characteristics of species in pioneer and mature habitats. Symp. Zool. Soc. Lon 42:109–123Google Scholar
  15. Dumpert K. and Platen R. (1985). Zur Biologie eines Buchenwaldbodens. 4. Die Spinnenfauna. Carolinea 42:75–106Google Scholar
  16. Engel K. (1999). Analyse und Bewertung von Umbaumaßnahmen in Fichtenreinbeständen anhand ökologischer Gilden der Wirbellosen-Fauna. Wissenschaft & Technik Verlag, BerlinGoogle Scholar
  17. Gessler A., Schneider S., von Sengbusch D., Weber P., Hanemann U., Huber C., Rothe A., Kreutzer K. and Rennenberg H. (1998). Field and laboratory experiments on net uptake of nitrate and ammonium the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138:275–285CrossRefGoogle Scholar
  18. Geiger R. 1961. Das Klima der bodennahen Luftschicht, 4th ed. Braunschweig, 646 ppGoogle Scholar
  19. Heimer S. and Nentwig W. (1991). Spinnen Mitteleuropas. Parey, BerlinGoogle Scholar
  20. Heydemann B. (1964). Die Carabiden der Kulturbiotope von Binnenland und Nordseeküste – ein ökologischer Vergleich (Coleopt., Carabidae). Zool. Anz. 172:4–86Google Scholar
  21. Hill M.O. and Gauch H.G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  22. Huber C. and Kreutzer K. (2002). Three years of continuous measurements of atmospheric ammonia concentrations over a forest stand at the Höglwald site in southern Bavaria. Plant Soil 240:13–22CrossRefGoogle Scholar
  23. Huber C., Oberhauser A. and Kreutzer K. (2002). Deposition of ammonia to the forest floor under spruce and beech at the Höglwald site. Plant Soil 240:3–11CrossRefGoogle Scholar
  24. Huber C. and Baumgarten M. (2005). Early effects of forest regeneration with selective and small scale clear-cutting on ground beetles (Coleoptera, Carabidae) in a Norway spruce stand in Southern Bavaria (Höglwald). Biodiv. Conserv. 14:1989–2007CrossRefGoogle Scholar
  25. Huber C., Kreutzer K., Röhle H. and Rothe A. (2004a). Response of artificial acid irrigation, liming, and N-fertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of a N saturated Norway spruce stand. For. Ecol. Manage 200:3–21CrossRefGoogle Scholar
  26. Huber C., Weis W., Baumgarten M. and Göttlein A. (2004b). Spatial and temporal variation of seepage water chemistry after femel and small scale clear-cutting in a N-saturated Norway spruce stand. Plant Soil 267:23–40CrossRefGoogle Scholar
  27. Huhta V. (1971). Succession in the spider communities of the forest floor after clear-cutting and prescribed burning. Ann. Zool. Fennici 8:483–542Google Scholar
  28. Huhta V., Karprinen E., Nurminen M. and Valpas A. (1967). Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Ann. Zool. Fennici 4:87–143Google Scholar
  29. Huhta V., Nurminen M. and Valpas A. (1969). Further notes on the effect of silvicultural practices upon the fauna of coniferous forest soil. Ann. Zool. Fennici 6:327–334Google Scholar
  30. Jennings D.T., Houseaert M.W., Dondale C.D. and Redner J.H. (1988). Spiders (Araneae) associated with strip-clearcut and dense spruce-fir forests of Maine. J. Arachnol. 16:55–70Google Scholar
  31. Jones D. 1990. Der Kosmos-Spinnenführer, Mitteleuropäische Spinnen und Weberknechte. – Franckh‘sche VerlagshandlungGoogle Scholar
  32. Junker E.A., Ratschker U.M. and Roth M. 2000. Impacts of silvicultural practice on the ground living-spider community (Arachnidae: Araneae) of mixed mountain forest in the Chiemgau Alps (Germany). In: Gajdos P. and Pekar S. (eds), Proceedings of the 18th European Colloquium of Arachnology, Stara Lesna, 1999. Ekologia (Bratislava) 19, Supplement 3, pp. 107–117Google Scholar
  33. Kajak H. (1965). An analysis of food relations between the spiders – Araneus cornutus Clerck and Araneus quadratus Clerck – and their prey in meadows. Ekol. Polska A 12: 717–764Google Scholar
  34. Kreutzer K. (1995). Effects of forest liming on soil processes. Plant and Soil 168–169: 447–470CrossRefGoogle Scholar
  35. Kreutzer K. and Bittersohl J. (1986). Investigations about the effects of acid deposition and compensative liming on the forest. Forstw. Cbl. 105: 273–282 (in German)CrossRefGoogle Scholar
  36. Kreutzer K. and Weiss T. (1998). The Höglwald field experiment – aims, concept and basic data. Plant Soil 199:1–10CrossRefGoogle Scholar
  37. Larsson S. and Danell K. (2001). Science and the management of boreal forest biodiversity. Scand. J. For. Res. Suppl. 3: 5–9CrossRefGoogle Scholar
  38. Likens G.E. (2001). Biogeochemistry, the watershed approach: some uses and limitations. Marine Freshw. Res. 52:5–12CrossRefGoogle Scholar
  39. Luff M.L. (1975). Some features influencing the efficiency of pitfall traps. Oecologia 19:345–357Google Scholar
  40. McCune B., Grace J.B. and Urban D.L. (2002). Analysis of Ecological Communities. MjM Software Design, Glenaden Beach, Oregon, USA, ISBN 0-9721290-0-6,
  41. McIver J.D., Parsons G.L. and Moldenke A.R. (1992). Litter spider succession after clear-cutting in a western coniferous forest. Can. J. For. Res. 22: 984–992Google Scholar
  42. Moulder B.C. and Reichle D.E. (1972). Significance of spider predation in the energy dynamics of forest arthropod communities. Ecol. Monogr. 42: 473–498CrossRefGoogle Scholar
  43. Okansen J. and Minchin P.R. (1997). Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8:447–454CrossRefGoogle Scholar
  44. Pajunen T., Haila Y., Halme E., Niemelä J. and Punttila P. (1995). Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland. Ecography 18:62–72CrossRefGoogle Scholar
  45. Pearce J.L., Venier L.A., Eccles G., Pedlar J. and McKenney D. (2004). Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiv. Conserv. 13: 1305–1334CrossRefGoogle Scholar
  46. Phillips I.D. and Cobb T.P. (2005). Effects of habitat structure and lid transparency on pitfall catches. Environ. Entomol. 34: 875–882CrossRefGoogle Scholar
  47. Platen R., Moritz M., Broen B. v., Bothmann I., Bruhn K. and Simon U. 1991. Liste der Webspinnen- und Weberknechtarten (Arach.: Araneida, Opilionida) des Berliner Raumes und ihre Auswertung für Naturschutzzwecke (Rote Liste). In: Auhagen A., Platen R., and Sukopp H. (eds), Rote Liste der gefährdeten Pflanzen und Tiere in Berlin. Landschaftsentwicklung und Umweltforschung S 6: 169–205Google Scholar
  48. Ratschker U.M. and Roth M. (2000). Studies on ground dwelling spiders (Araneae) of agrarian habitat types in Northeast Germany: ecological and nature conservation aspects. Ekologia-Bratislava 19:213–225 (Suppl. 3, 2000)Google Scholar
  49. Riechert S.E. and Gillespie R.G. 1986. Habitat choice and utilization in web-building spiders. In: Shear, W.A. (ed.), Spiders: Webs, Behaviour, and Evolution. Stanford University Press, pp. 23–48Google Scholar
  50. Riecken U. (1999). Effects of short-term sampling on ecological characterisation and evaluation of epigeic spider communities and their habitats for site assessment studies. J. Arachnol. 27:189–195Google Scholar
  51. Robinson J.V. (1981). The effect of architectural variation in habitat on a spider community: an experimental field study. Ecology 62:73–80CrossRefGoogle Scholar
  52. Rothe A., Huber C., Kreutzer K. and Weis W. (2002). Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other case studies. Plant Soil 240:33–45CrossRefGoogle Scholar
  53. Rothe A. and Mellert K.H. (2004). Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Pollut. 156:337–355CrossRefGoogle Scholar
  54. Siira-Pietikäinen A., Pietikäinen J., Fritze H. and Haimi J. (2001). Short-term responses of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods. Can. J. For. Res. 31:88–99CrossRefGoogle Scholar
  55. Siira-Pietikäinen A., Haimi J. and Siitonen J. (2003). Short-term response of soil macroarhropod community to clear felling and alternative forest regeneration methods. For. Ecol. Manage 172: 339–353CrossRefGoogle Scholar
  56. Spence J.R. (2001). The new boreal forestry: adjusting timber management to accommodate biodiversity. Trends Ecol. Evol. 16: 591–593CrossRefGoogle Scholar
  57. Tilman D. (1989). Ecological experimentation: strengths and conceptual problems. In: Likens G.E. (eds) Long Term Studies in Ecology. Springer Verlag, New York, pp. 136–157Google Scholar
  58. Turnbull A.L. (1966). A population of spiders and their potential prey in an overgrazed pasture in eastern Ontario. Canad. J. Zool. 44: 557–583CrossRefGoogle Scholar
  59. Uetz G.W. (1979). The influence of variation in litter habits on spider communities. Oecologia 40: 29–42CrossRefGoogle Scholar
  60. Uetz G. W. 1991. Habitat structure and spider foraging. In: Bell S.S., McCoy E.D. and Mushinsky H.R. (eds), Habitat Structure: The Physical Arrangement of Objects in Space, Chapmann and Hall, pp. 325–348Google Scholar
  61. Uetz G.W. and Unzicker J.D. (1976). Pitfall trapping in ecological studies of wandering spiders. J. Arachnol. 3: 101–111Google Scholar
  62. Weis W., Huber C. and Göttlein A. (2001). Regeneration of mature Norway spruce stands. The impact of clear cutting and selective cutting on seepage water quality and soil fertility. Sci. World 1(S2): 493–499Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Christian Huber
    • 1
  • Caroline Schulze
    • 1
  • Manuela Baumgarten
    • 1
  1. 1.Fachgebiet für Waldernährung und Wasserhaushalt, Department für ÖkologieWissenschaftszentrum WeihenstephanFreisingGermany

Personalised recommendations