Skip to main content

Biosynthesis, Compartmentation and Cellular Functions of Glutathione in Plant Cells

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

Glutathione is the most abundant low molecular weight thiol in all plant cells with the only exception of some plant species that produce and accumulate homologous tripeptides to similar levels. The broad range of functions of glutathione in terms of detoxification of heavy metals, xenobiotics and reactive oxygen species (ROS) has been highlighted in numerous reviews before. Glutathione S-conjugates formed during detoxification of electrophilic xenobiotics are immediately sequestered to the vacuole for degradation. This degradation is initiated by cleavage of the two terminal amino acids of glutathione. The cleavage of the γ-peptide bond between glutamate and cysteine involves a specific γ-glutamyl transpeptidase. Other members of this gene family are suggested to be involved in glutathione catabolism in the apoplast and linked to long-distance transport of glutathione. Recent findings on the biosynthesis and compartmentation now begin to illuminate how the biosynthesis of glutathione is regulated at the molecular level and how different subcellular pools of glutathione are interconnected. Glutamate-cysteine ligase (GSH1) is the key regulatory enzyme of glutathione biosynthesis. Redox-dependent modulation of GSH1 activity also makes GSH1 a key factor in cellular redox homeostasis. Current work indicates that the redox state of the cellular glutathione redox buffer can be read out and directly transferred to target proteins by glutaredoxins. In this way glutathione is both, a scavenger for toxic compounds and a sensor for environmental signals which impact on the cellular redox state. This review aims at describing the important recent results on the cellular glutathione homeostasis in plant cells and highlighting the implications for glutathione-based redox sensing and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameisen J (2002) On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death Differ 9: 367–393

    Article  PubMed  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S and Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448–2462

    Article  PubMed  CAS  Google Scholar 

  • Barreto L, Garcera A, Jansson K, Sunnerhagen P and Herrero E (2006) A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot Cell 5: 1748–1759

    Article  PubMed  CAS  Google Scholar 

  • Bass R, Ruddock LW, Klappa P and Freedman RB (2004) A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem 279: 5257–5262

    Article  PubMed  CAS  Google Scholar 

  • Beck A, Lendzian K, Oven M, Christmann A and Grill E (2003) Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 62: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P and Orrenius S (1992) Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc Natl Acad Sci U S A 89: 4412–4416

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Aslund F, Chen Y and Leustek T (1998) Gluta-redoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc Natl Acad Sci U S A 95: 8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK and Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282: 1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L and Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K and Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49: 740–749

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T and Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: Evidence for regulation by heavy metal exposure. Plant Cell Environ 26: 1703–1711

    Article  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S and Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275: 13259–13265

    Article  PubMed  CAS  Google Scholar 

  • Briviba K, Fraser G, Sies H and Ketterer B (1993) Distribution of the monochlorobimane-glutathione conjugate between nucleus and cytosol in isolated hepatocytes. Biochem J 294: 631–633

    PubMed  CAS  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D, Zhang M-Y and Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135: 1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS and Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141: 446–455

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Komives EA and Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141: 108–120

    Article  PubMed  CAS  Google Scholar 

  • Chen Z and Lash LH (1998) Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J Pharmacol Exp Ther 285: 608–618

    PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S-C and Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100: 3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Rudhe C, Glaser E and Whelan J (2003a) Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 53: 341–356

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J and Millar AH (2003b) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278: 46869–46877

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163: 319–332

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG and Kramer U (2002) A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci 7: 309–315

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R and Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Coleman JOD, Blake-Kalff MMA and Davies TGE (1997) Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation. Trends Plant Sci 2: 144–151

    Article  Google Scholar 

  • Copley SD and Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3: 1–16

    Article  Google Scholar 

  • Creissen G, Reynolds H, Xue Y and Mullineaux P (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167–175

    Article  PubMed  CAS  Google Scholar 

  • Cuozzo JW and Kaiser CA (1999) Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1: 130–135

    Article  PubMed  CAS  Google Scholar 

  • Dangl J and Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826–833

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M and Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53: 1255–1272

    Article  PubMed  Google Scholar 

  • Des Marais DJ (2000) Evolution: When did photosynthesis emerge on earth? Science 289: 1703–1705

    Google Scholar 

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D and Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG and Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277: 30859–30869

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM and Edwards R (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138: 2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Solis J, Lopez-Martin M, Ager F, Ynsa M, Romero L and Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ and Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279: 22284–22293

    Article  PubMed  CAS  Google Scholar 

  • Ducruix C, Junot C, Fievet J, Villiers F, Ezan E and Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88: 1733–1742

    Article  PubMed  CAS  Google Scholar 

  • Edwards R and Dixon D (2005) Plant glutathione transferases. Methods Enzymol 401: 169–186

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP and Walbot V (2000) Plant gluta-thione S-transferases: Enzymes with multiple functions in sickness and in health. Trends Plant Sci 5: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55: 333–356

    Article  PubMed  CAS  Google Scholar 

  • Fahey RC and Sundquist AR (1991) Evolution of glutathione metabolism. Adv Enzymol RAMB 64: 1–53

    CAS  Google Scholar 

  • Fahey R, Newton G, Arrick B, Overdank-Bogart T and Aley S (1984) Entamoeba histolytica: A eukaryote without glutathione metabolism. Science 224: 70–72

    Article  PubMed  CAS  Google Scholar 

  • Fernandes A and Holmgren A (2004) Glutaredoxins: Glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6: 63–74

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell J, Mylona P, Miedema H, Torres M, Linstead P, Costa S, Brownlee C, Jones J, Davies J and Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH and Noctor G (2005) Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL and Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6: 486–492

    Article  PubMed  CAS  Google Scholar 

  • Frendo P, Jimenez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Herouart D and Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126: 1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Fricker MD, May M, Meyer AJ, Sheard N and White NS (2000) Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc (Oxf) 198: 162–173

    Article  CAS  Google Scholar 

  • Frova C (2003) The plant glutathione transferase gene family: Genomic structure, functions, expression and evolution. Physiol Plant 119: 469–479

    Article  CAS  Google Scholar 

  • Fukao Y, Hayashi M and Nishimura M (2002) Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol 43: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY and Koonin EV (1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6: 2639–2643

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39: 573–580

    Article  PubMed  CAS  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S and Le Marechal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: A proteomic approach. Photosynth Res 89: 201–211

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R and Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that pad4 encodes a regulatory factor and that four pad genes contribute to downy mildew resistance. Genetics 146: 381–392

    PubMed  CAS  Google Scholar 

  • Gogos A and Shapiro L (2002) Large conformational changes in the catalytic cycle of glutathione synthase. Structure 10: 1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Gong JM, Lee DA and Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100: 10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Grzam A, Tennstedt P, Clemens S, Hell R and Meyer AJ (2006) Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the gluta-thione moiety by phytochelatin synthase. FEBS Lett 580: 6384–6390

    Article  PubMed  CAS  Google Scholar 

  • Grzam A, Martin MN, Hell R and Meyer AJ (2007) γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett 581: 3131–3138

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Alcalá G, Gotor C, Meyer AJ, Fricker M, Vega JM and Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci U S A 97: 11108–11113

    Article  PubMed  Google Scholar 

  • Haag-Kerwer A, Schafer H, Heiss S, Walter C and Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50: 1827–1835

    Article  CAS  Google Scholar 

  • Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY and Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279: 13044–13053

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kato H, Katsube Y and Oda J (1996) A pseudo-michaelis quaternary complex in the reverse reaction of a ligase: Structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 A resolution. Biochemistry 35: 11967–11974

    Article  PubMed  CAS  Google Scholar 

  • Hartmann TN, Fricker MD, Rennenberg H and Meyer AJ (2003) Cell-specific measurement of cytosolic gluta-thione in poplar leaves. Plant Cell Environ 26: 965–975

    Article  PubMed  CAS  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I and Millar AH (2007) SUBA: The Arabidopsis subcellular database. Nucleic Acids Res 35: D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A and Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: Cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C and Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54: 1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Hell R and Bergmann L (1990) γ-glutamylcysteine synthetase in higher plants: Catalytic properties and subcellular localization. Planta 180: 603–612

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou J, Vavasseur A and Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88: 1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C and Rennenberg H (2001) Significance of phloem-tanslocated organic sulfur compounds for the regulation of sulfur nutrition. Progr Bot 62: 177–193

    CAS  Google Scholar 

  • Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J and Oda Ji (2004) Crystal structure of γ-glutamylcysteine synthetase: Insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci U S A 101: 15052–15057

    Article  PubMed  CAS  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J and Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19: 2653–2661

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73: 2275–2279

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH and Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T and Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281: 27557–27565

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB and Cobbett CS (1995a) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107: 1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR and Cobbett CS (1995b) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Hwang CC, Sinskey AJ and Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 1496–1502

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Iwabuchi M and Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: Detection using biotinylated glutathione. Plant Cell Physiol 44: 655–660

    Article  PubMed  CAS  Google Scholar 

  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J and Bourguignon J (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6: 394–412

    PubMed  CAS  Google Scholar 

  • Jessop CE and Bulleid NJ (2004) Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells. J Biol Chem 279: 55341–55347

    Article  PubMed  CAS  Google Scholar 

  • Jez JM and Cahoon RE (2004) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279: 42726–42731

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Cahoon RE and Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: Functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279: 33463–33470

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Cahoon RE, Bonner ER and Chen S (2006) Redox-regulation of glutathione synthesis in plants. FASEB J 20: A41–A42

    Google Scholar 

  • Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ and Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141: 397–403

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Del Rio LA and Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114: 275–284

    PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA and Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118: 1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Jones D (2002) Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol 348: 93–112

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E and Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137: 713–723

    Article  PubMed  CAS  Google Scholar 

  • Klapheck S (1988) Homoglutathione: Isolation, quantification and occurrence in legumes. Physiol Plant 74: 727–732

    Article  CAS  Google Scholar 

  • Koehler C, Beverly K and Leverich E (2006) Redox pathways of the mitochondrion. Antioxid Redox Signal 8: 813–822

    Article  PubMed  CAS  Google Scholar 

  • Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM and Stacey G (2002) An oligopeptide transporter gene family in Arabidopsis. Plant Physiol 128: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M and Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31: 13–24

    Article  PubMed  CAS  Google Scholar 

  • Krezel A and Bal W (2003) Structure–function relationships in glutathione and its analogues. Org Biomol Chem 1: 3885–3890

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E and Sklodowska M (2005a) Compartment-specific role of the ascorbate–glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot 56: 921–933

    Article  PubMed  CAS  Google Scholar 

  • Kuzniak E and Sklodowska M (2005b) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222: 192–200

    Article  PubMed  CAS  Google Scholar 

  • Lappartient AG and Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2− uptake in intact canola. Plant Physiol 111: 147–157

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass AD and Touraine B (1999) Inter-organ signaling in plants: Regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Moon JS, Domier LL and Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol Biochem 40: 727–733

    Article  CAS  Google Scholar 

  • Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res 79: 305–318

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM and del Rio LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138: 2111–2123

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP and Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141: 288–298

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Zhao Y and Rea PA (1995) Magnesium adenosine 5′-triphosphate-energized transport of glutathione-S-conjugates by plant vacuolar membrane vesicles. Plant Physiol 107: 1257–1268

    PubMed  CAS  Google Scholar 

  • Lieberman MW, Wiseman AL, Shi Z-Z, Carter BZ, Barrios R, Ou C-N, Chevez-Barrios P, Wang Y, Habib GM, Goodman JC, Huang SL, Lebovitz RM and Matzuk MM (1996) Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A 93: 7923–7926

    Article  PubMed  CAS  Google Scholar 

  • Logan DC (2006) The mitochondrial compartment. J Exp Bot 57: 1225–1243

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Quist T, Ulanov A, Joly R and Bohnert H (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40: 845–859

    Article  PubMed  CAS  Google Scholar 

  • Martin MN (2003) Biosynthesis and metabolism of gluta-thione in plants. In: Setlow JK (ed) Genetic engineering, Vol 25, pp 163–188. Kluwer Academic/Plenum, London

    Google Scholar 

  • Martin MN, Saladores PH, Lambert E, Hudson AO and Leustek T (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol 140: 1715–1732

    Article  CAS  Google Scholar 

  • Martinoia E, Erwin G, Roberto T, Kreuz K and Amrhein N (1993) ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364: 247–249

    Article  CAS  Google Scholar 

  • Martinoia E, Massonneau A and Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41: 1175–1186

    Article  PubMed  CAS  Google Scholar 

  • May MJ and Leaver CJ (1994) Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A 91: 10059–10063

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M and Inze D (1998) Evidence for posttranscriptional activation of l-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci U S A 95: 12049–12054

    Article  PubMed  CAS  Google Scholar 

  • Meier I (2007) Composition of the plant nuclear envelope: Theme and variations. J Exp Bot 58: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208

    PubMed  CAS  Google Scholar 

  • Meyer AJ and Fricker MD (2000) Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy. J Microsc (Oxf) 198: 174–181

    Article  CAS  Google Scholar 

  • Meyer AJ and Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130: 1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Meyer A and Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86: 435–457

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, May MJ and Fricker M (2001) Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J 27: 67–78

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot J-P and Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52: 973–986

    Article  PubMed  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin J-M, Trost P, Miginiac-Maslow M, Noctor G and Lemaire SD (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci U S A 102: 16478–16483

    Article  PubMed  CAS  Google Scholar 

  • Minglin L, Yuxiu Z and Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Mou Z, Fan W and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Ndamukong I, Abdallat A, Thurow C, Fode B, Zander M, Weigel R and Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50: 128–139

    Article  PubMed  CAS  Google Scholar 

  • Newton G, Arnold K, Price M, Sherrill C, Delcardayre S, Aharonowitz Y, Cohen G, Davies J, Fahey R and Davis C (1996) Distribution of thiols in microorganisms: Mycothiol is a major thiol in most actinomycetes. J Bacteriol 178: 1990–1995

    PubMed  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M and Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129: 1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian J-C and Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141: 1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: The central roles of soluble redox couples. Plant Cell Environ 29: 409–425

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A, Jouanin L and Foyer C (1999) Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot 50: 1157–1167

    Article  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S and Foyer CH (2000) Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. Philos Trans R Soc Lond B Biol Sci 355: 1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H and Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53: 1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr A, Xiang C and Oliver D (2007a) Characterization of the extracellular gamma-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49: 865–877

    Article  PubMed  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Zhao P, Xiang C and Oliver D (2007b) Glutathione conjugates in the vacuole are degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 49: 878–888

    Article  PubMed  CAS  Google Scholar 

  • Østergaard H, Henriksen A, Hansen FG and Winther JR (2001) Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein. EMBO J 20: 5853–5862

    Article  PubMed  Google Scholar 

  • Østergaard H, Tachibana C and Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166: 337–345

    Article  PubMed  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J and Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS and Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J, in press

    Google Scholar 

  • Peltoniemi MJ, Karala A-R, Jurvansuu JK, Kinnula VL and Ruddock LW (2006) Insights into deglutathionylation reactions: Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the γ-linkage present in glutathione. J Biol Chem 281: 33107–33114

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Kiddle G, Hernandez I, Foster SJ, Asensi A, Taybi T, Barnes J and Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol 141: 423–435

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56: 15–39

    Article  PubMed  CAS  Google Scholar 

  • Polekhina G, Board P, Gali R, Rossjohn J and Parker M (1999) Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. EMBO J 18: 3204–3213

    Article  PubMed  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi L, Aromolo R, Costantino P and Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta 223: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Price CA (1957) A new thiol in legumes. Nature 180: 148–149

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2006) Phytochelatin synthase, papain’s cousin, in stereo. Proc Natl Acad Sci U S A 103: 507–508

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58: 347–375

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM and Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49: 727–760

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Vatamaniuk OK and Rigden DJ (2004) Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136: 2463–2474

    Article  PubMed  CAS  Google Scholar 

  • Romanyuk ND, Rigden DJ, Vatamaniuk OK, Lang A, Cahoon RE, Jez JM and Rea PA (2006) Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiol 141: 858–869

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz K, Jacquot J and Wingsle G (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7: 919–929

    Article  PubMed  CAS  Google Scholar 

  • Sanmartin M, Pavlina D. Drogoudi, Tom Lyons IP, Jeremy Barnes and Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216: 918–928

    PubMed  CAS  Google Scholar 

  • Schafer FQ and Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212

    Article  PubMed  CAS  Google Scholar 

  • Schäfer HJ, Haag-Kerwer A and Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: Evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97

    Article  PubMed  Google Scholar 

  • Sevier C, Qu H, Heldman N, Gross E, Fass D and Kaiser C (2007) Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1. Cell 129: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Shelton M, Chock P and Mieyal J (2005) Glutaredoxin: Role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7: 348–366

    Article  PubMed  CAS  Google Scholar 

  • Singh AK, Dhaunsi GS, Gupta MP, Orak JK, Asayama K and Singh I (1994) Demonstration of glutathione peroxidase in rat liver peroxisomes and its intraorganellar distribution. Arch Biochem Biophys 315: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK and Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100: 14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Conklin P and Loewus F (2001) Biosynthesis of ascorbic acid in plants: A renaissance. Annu Rev Plant Physiol Plant Mol Biol 52: 437–467

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Osawa H, Patel A, Gassmann W and Stacey G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223: 291–305

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Lauterbach C and Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139: 701–712

    Article  PubMed  CAS  Google Scholar 

  • Storozhenko S, Belles-Boix E, Babiychuk E, Herouart D, Davey MW, Slooten L, Van Montagu M, Inze D and Kushnir S (2002) γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol 128: 1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Koizumi N and Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24: 1177–1188

    Article  CAS  Google Scholar 

  • Tong Y, Kneer R and Zhu Y (2004) Vacuolar compartmentalization: A second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9: 7–9

    Article  PubMed  CAS  Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Shiraki K, Miyasaka H, Takagi M, Hirata K and Miyamoto K (2004) Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. Pcc 7120. Biochem Biophys Res Commun 315: 751–755

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D and Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135: 1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Ullmann P, Gondet L, Potier S and Bach TJ (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236: 662–669

    Article  PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TL and Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123: 1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P and Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275: 31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO and Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis: Stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J Biol Chem 279: 22449–22460

    Article  PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO and Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31: 729–740

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ and Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97–110

    Article  PubMed  CAS  Google Scholar 

  • Vivares D, Arnoux P and Pignol D (2005) A papain-like enzyme at work: Native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A 102: 18848–18853

    Article  PubMed  CAS  Google Scholar 

  • Wachter A (2004) Glutathion-Synthese und -kompartimentierung in der Pflanze: Nachweis komplexer Regulations-mechanismen. PhD thesis, University of Heidelberg.

    Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J and Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41: 15–30

    Article  PubMed  CAS  Google Scholar 

  • Wang CL and Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31: 1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W and Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57: 2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Weber A, Schwacke R and Flügge U (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56: 133–164

    Article  PubMed  CAS  Google Scholar 

  • Xiang C and Bertrand D (2000) Glutathione synthesis in Arabidopsis: Multilevel controls coordinate responses to stress. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I and Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants, pp 409–412. Paul Haupt Publishers, Berne

    Google Scholar 

  • Xiang C and Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM and Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564–574

    Article  PubMed  CAS  Google Scholar 

  • Xing S, Lauri A and Zachgo S (2006) Redox regulation and flower development: A novel function for glutaredoxins. Plant Biol 8: 547–555

    Article  PubMed  CAS  Google Scholar 

  • Zhang M-Y, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK and Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134: 482–491

    Article  PubMed  CAS  Google Scholar 

  • Zhou N, Tootle TL and Glazebrook J (1999) Arabidopsis pad3, a gene required for camalexin biosynthesis, encodes a putative cytochrome p450 monooxygenase. Plant Cell 11: 2419–2428

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L and Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73–80

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L and Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121: 1169–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Meyer, A.J., Rausch, T. (2008). Biosynthesis, Compartmentation and Cellular Functions of Glutathione in Plant Cells. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_9

Download citation

Publish with us

Policies and ethics