Skip to main content

Metabolism of Cysteine in Plants and Phototrophic Bacteria

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

The sulfur amino acids cysteine and methionine function in many basic and essential processes of life. For cysteine this includes structural, catalytic, regulatory and metabolic functions. The special redox chemistry of sulfur and the thiol group in particular proved to be a versatile tool during evolution, not the least in electron transport processes in association with iron. Plants are primary producers and carry out assimilatory sulfate reduction to first synthesize cysteine that subsequently forms the backbone for methionine formation. This reaction sequence seems to be conserved in all phototrophic organisms. The position of cysteine biosynthesis between assimilation of inorganic sulfate and metabolization of organic sulfide makes it a prime target for coordination of both complex processes. It is thus a mediator between supply and demand in sulfur metabolism of a cell.

Much attention has been paid to cysteine biosynthesis in plants, while less is known about the pathway in algae, cyanobacteria and purple bacteria. Recent evidence indicates that the two enzymes of cysteine synthesis, serine acetyltransferase and O-acetylserine-(thiol)-lyase are highly conserved between these groups and, at least in plants, form a reversible protein complex. This so-called cysteine synthase complex has been suggested to act as sensor for sulfide in cells and to be part of a regulatory loop that maintains cysteine homeostasis between sulfate reduction and cysteine consumption. Kinetic studies of the properties of the enzymes together with structural modelling of the proteins in the cysteine synthase complex as well studies using transgenic plants strongly support this unique regulatory system in plants.

The degradation of cysteine is still an under-investigated subject. Possible alternative routes of thiol transfer and sulfide release are compiled here and discussed with respect to their putative functions in S-transfer reactions, cysteine degradation, detoxification reactions and iron-sulfur cluster biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldag R, Young J and Yamamoto M (1971) An enzymatic chromatographic procedure for the determination of D-amino acids in plant and soil extracts. Phytochemistry 10: 267–274

    CAS  Google Scholar 

  • Awazuhara M, Hirai MY, Hayashi H, Chino M, Naito S and Fujiwara T (2000) O-Acetyl-L-serine content in rosette leaves of Arabidopsis thaliana affected by S and N nutrition. In: Sulfur nutrition and sulfur assimilation in higher plants, Brunold C, Rennenberg H, De Kok LJ, Stulen I and Davidian J-C (eds), pp 331–333. P. Haupt, Bern

    Google Scholar 

  • Bae MS, Cho EJ, Choi E-Y and Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36: 652–663

    PubMed  CAS  Google Scholar 

  • Balk J and Lobreaux S (2005) Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10: 324–331

    PubMed  CAS  Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM and Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol) lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40: 729–736

    PubMed  CAS  Google Scholar 

  • Beaman TW, Binder DA, Blanchard JS and Roderick SL (1997) Three-dimensional structure of tetrahydrodipicolinate N-succinyltransferase. Biochemistry 36: 489–494

    PubMed  CAS  Google Scholar 

  • Becker MA, Kredich NM and Tomkins GM (1969) The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem 244: 2418–2427

    PubMed  CAS  Google Scholar 

  • Beinert H (2000) A tribute to sulfur. Eur J Biochem 267: 5657–5664

    PubMed  CAS  Google Scholar 

  • Benci S, Vaccari S, Mozzarelli A and Cook PF (1997) Time-resolved fluorescence of O-acetylserine sulfhydrylase catalytic intermediates. Biochemistry 36: 15419–15427

    PubMed  CAS  Google Scholar 

  • Benci S, Vaccari S, Mozzarelli A and Cook PF (1999) Time-resolved fluorescence of O-acetylserine sulfhydrylase. Biochim Biophys Acta 1429: 317–330

    PubMed  CAS  Google Scholar 

  • Berkowitz O, Wirtz M, Wolf A, Kuhlmann J and Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277: 30629–30634

    PubMed  CAS  Google Scholar 

  • Blaszczyk A, Brodzik R and Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J 20: 237–243

    PubMed  CAS  Google Scholar 

  • Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I, Haneklaus S and Schnug E (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. J Exp Bot 55: 2305–2312

    PubMed  CAS  Google Scholar 

  • Blumenthal SG, Hendrickson HR, Abrol YP and Conn EE (1968) Cyanide metabolism in higher plants. 3. The biosynthesis of β-cyanolanine. J Biol Chem 243: 5302–5307

    PubMed  CAS  Google Scholar 

  • Bogdanova N and Hell R (1997) Cysteine synthesis in plants: protein–protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11: 251–262

    PubMed  CAS  Google Scholar 

  • Bonner ER, Cahoon RE, Knapke SM and Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280: 38803–38813

    PubMed  CAS  Google Scholar 

  • Bork C and Hell R (2000) Expression patterns of the sulfite reductase gene from Arabidopsis thaliana. In: Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects, Brunold C, Davidian, J-C, De Kok, L, Rennenberg H, Stulen I (eds), pp 299–301. P. Haupt, Bern

    Google Scholar 

  • Bruckner H and Westhauser T (2003) Chromatographic determination of L- and D-amino acids in plants. Amino Acids 24: 43–55

    PubMed  CAS  Google Scholar 

  • Brunold C (1990) Reduction of sulfate to sulfide. In: Sulfur nutrition and sulfur assimilation in higher plants, Rennenberg H, Brunold C, De Kok LJ, Stulen E (eds), pp 13–32. SPB Academic

    Google Scholar 

  • Buchner P, Takahashi H and Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55: 1765–1773

    PubMed  CAS  Google Scholar 

  • Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF and Jansonius JN (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283: 121–133

    PubMed  CAS  Google Scholar 

  • Burkhard P, Tai CH, Jansonius JN and Cook PF (2000) Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound. J Mol Biol 303: 279–286

    PubMed  CAS  Google Scholar 

  • Burkhard P, Tai CH, Ristroph CM, Cook PF and Jansonius JN (1999) Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 291: 941–953

    PubMed  CAS  Google Scholar 

  • Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S and Mozzarelli A (2005) Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 14: 2115–2124

    PubMed  CAS  Google Scholar 

  • Chen HC, Yokthongwattana K, Newton AJ and Melis A (2003) SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218: 98–106

    PubMed  CAS  Google Scholar 

  • Clarkson DT, EugĂ©nio D and Sara A (1999) Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O-acetyl-L-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiol Biochem 37: 283–290

    CAS  Google Scholar 

  • Cook PF and Wedding RT (1976) A reaction mechanism from steady state kinetic studies for O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2. J Biol Chem 251: 2023–2029

    PubMed  CAS  Google Scholar 

  • Cook PF and Wedding RT (1978) Cysteine synthetase from Salmonella typhimurium LT-2. Aggregation, kinetic behavior, and effect of modifiers. J Biol Chem 253: 7874–7879

    PubMed  CAS  Google Scholar 

  • Crawford NM and Forde BG (2002) Molecular and developmental biology of inorganic nitrogen nutrition. The Arabidopsis Book: 1–25

    Google Scholar 

  • De Kok LJ, Stuiver CEE, Westerman S and Stulen I (2002) Elevated levels of hydrogen sulfide in the plant environment: nutrient or toxin. In: Air pollution and plant biotechnology. Prospects for phytomonitoring and phytoremediation, Omasa K, Saji H, Youssefian S and Kondo N (eds), pp 201–219. Springer, Tokyo

    Google Scholar 

  • Denk D and Böck A (1987) L-Cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol 133: 515–525

    PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC and Gotor C (2001) The cytosolic O-acetylserine(thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276: 9297–9302

    PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC and Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotech J 2: 469–476

    CAS  Google Scholar 

  • Droux M (2003) Plant serine acetyltransferase: new insights for regulation of sulphur metabolism in plant cells. Plant Physiol Biochem 41: 619–627

    CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynth Res 79: 331–348

    PubMed  CAS  Google Scholar 

  • Droux M, Martin J, Sajus P and Douce R (1992) Purification and characterization of O-acetylserine-(thiol)-lyase from spinach chloroplasts. Arch Biochem Biophys 295: 379–390

    PubMed  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R and Job D (1998) Interactions between serine acetyltransferase and O-acetylserine- (thiol)-lyase in higher plants-structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255: 235–245

    PubMed  CAS  Google Scholar 

  • Dunnill PM and Fowden L (1965) Enzymatic formation of β-cyanoalanine from cyanide by Escherichia coli extracts. Nature 208: 1206–1207

    PubMed  CAS  Google Scholar 

  • Farago S and Brunold C (1994) Regulation of thiol contents in maize roots by intermediates and effectors of glutathione synthesis. J Plant Physiol 144: 433–437

    CAS  Google Scholar 

  • Floss HG, Hadwiger L and Conn EE (1965) Enzymatic formation of β-cyanoalanine from cyanide. Nature 208: 1207–1208

    PubMed  CAS  Google Scholar 

  • Francois JA, Kumaran S and Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18: 3647–3655

    PubMed  CAS  Google Scholar 

  • Frazzon AP, Ramirez MV, Warek U, Balk J, Frazzon J, Dean DR and Winkel BS (2007) Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly. Plant Mol Biol 64: 225–240

    PubMed  CAS  Google Scholar 

  • Friedman M (1999) Chemistry, nutrition, and microbiology of D-amino acids. J Agric Food Chem 47: 3457–3479

    PubMed  CAS  Google Scholar 

  • Fromageot C (1951). In: The enzymes, Sumner J and Myrbäck K (eds), pp 1237–1243. Academic, New York

    Google Scholar 

  • Fromageot C, Wookey E and Chaix P (1940) Enzymologia 9: 198–214

    Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Koreeda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA and Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126: 363–375

    PubMed  CAS  Google Scholar 

  • Gorman J and Shapiro L (2004) Structure of serine acetyltransferase from Haemophilus influenzae Rd. Acta Crystallogr D Biol Crystallogr 60: 1600–1605

    PubMed  Google Scholar 

  • Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM and Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci U S A 97: 11108–11113

    PubMed  CAS  Google Scholar 

  • Harada E, Choi EJ, Tsuchisaka A, Obata H and Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158: 655–661

    CAS  Google Scholar 

  • Harms K, von Ballmoos P, Brunold C, Hofgen R and Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22: 335–343

    PubMed  CAS  Google Scholar 

  • Harrington H and Smith I (1980) Cysteine metabolism in cultured tobacco cells. Plant Physiol 65: 151–155

    PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K and Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123: 1163–1172

    PubMed  CAS  Google Scholar 

  • Heidenreich T, Wollers S, Mendel RR and Bittner F (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280: 4213–4218

    PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138–148

    PubMed  CAS  Google Scholar 

  • Hell R (1998). Molekulare Physiologie des Primärstoffwechsels von Schwefel in Pflanzen. Shaker, Aachen

    Google Scholar 

  • Hell R (2003) Metabolic regulation of cysteine synthesis and sulfur assimilation. In: Sulfate transport and assimilation in plants, Davidian JC, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E and Rennenberg H (eds), pp 21–31. Backhuys Publishers, Leiden

    Google Scholar 

  • Hell R, Bork C, Bogdanova N, Frolov I and Hauschild R (1994) Isolation and characterization of two cDNAs encoding for compartment specific isoforms of O-acetylserine-(thiol)-lyase from Arabidopsis thaliana. FEBS Lett 351: 257–262

    PubMed  CAS  Google Scholar 

  • Hell R and Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotechnol 12: 161–168

    PubMed  CAS  Google Scholar 

  • Hell R, Jost R, Berkowitz O and Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22: 245–257

    PubMed  CAS  Google Scholar 

  • Hendrickson HR and Conn EE (1969) Cyanide metabolism in higher plants. IV. Purification and properties of the β-cyanolanine synthase of blue lupine. J Biol Chem 244: 2632–2640

    PubMed  CAS  Google Scholar 

  • Hesse H and Hoefgen R (1998) Isolation of cDNAs encoding cytosolic (Accession No. AF044172) and plastidic (Accession No. AF044173) cysteine synthase isoforms from Solanum tuberosum (PGR98–057). Plant Physiol 116: 1604

    Google Scholar 

  • Hesse H, Lipke J, Altmann T and Hofgen R (1999) Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol) lyase) from Arabidopsis thaliana. Amino Acids 16: 113–131

    PubMed  CAS  Google Scholar 

  • Hesse H, Nikiforova V, Gakiere B and Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55: 1283–1292

    PubMed  CAS  Google Scholar 

  • Hindson VJ, Moody PC, Rowe AJ and Shaw WV (2000) Serine acetyltransferase from Escherichia coli is a dimer of trimers. J Biol Chem 275: 461–466

    PubMed  CAS  Google Scholar 

  • Hindson VJ and Shaw WV (2003) Random-order ternary complex reaction mechanism of serine acetyltransferase from Escherichia coli. Biochemistry 42: 3113–3119

    PubMed  CAS  Google Scholar 

  • Hirai M, Fujiwara T, Awazuhara M, Kimura T, Noji M and Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33: 651–663

    PubMed  CAS  Google Scholar 

  • Hopkins L, Parmar S, Blaszczyk A, Hesse H, Hoefgen R and Hawkesford MJ (2005) O-acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138: 433–440

    PubMed  CAS  Google Scholar 

  • Howarth JR, Dominguez-Solis JR, Gutierrez-Alcala G, Wray JL, Romero LC and Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51: 589–598

    PubMed  CAS  Google Scholar 

  • Huang B, Vetting MW and Roderick SL (2005) The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol 187: 3201–3205

    PubMed  CAS  Google Scholar 

  • Inoue K, Noji M and Saito K (1999) Determination of the sites required for the allosteric inhibition of serine acetyltransferase by L-cysteine in plants. Eur J Biochem 266: 220–227

    PubMed  CAS  Google Scholar 

  • Johnson C, Roderick S and Cook P (2005) The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol. Arch Biochem Biophys 433: 85–95

    PubMed  CAS  Google Scholar 

  • Johnson CM, Huang B, Roderick SL and Cook PF (2004) Chemical mechanism of the serine acetyltransferase from Haemophilus influenzae. Biochemistry 43: 15534–15539

    PubMed  CAS  Google Scholar 

  • Jones PR, Manabe T, Awazuhara M and Saito K (2003) A new member of plant CS-lyases. A cystine lyase from Arabidopsis thaliana. J Biol Chem 278: 10291–10296

    PubMed  CAS  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ and Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253: 237–247

    PubMed  CAS  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M and Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137: 220–230

    PubMed  CAS  Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT and Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26: 153–157

    PubMed  CAS  Google Scholar 

  • Kim H, Hirai MY, Hayashi H, Chino M, Naito S and Fujiwara T (1999) Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209: 282–289

    PubMed  CAS  Google Scholar 

  • Kitabatake M, So MW, Tumbula DL and Soll D (2000) Cysteine biosynthesis pathway in the archaeon Methanosarcina barkeri encoded by acquired bacterial genes? J Bacteriol 182: 143–145

    PubMed  CAS  Google Scholar 

  • Kopriva S, Suter M, von Ballmoos P, Hesse H, Krahenbuhl U, Rennenberg H and Brunold C (2002) Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol 130: 1406–1413

    PubMed  CAS  Google Scholar 

  • Koprivova A, Suter M, den Camp RO, Brunold C and Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122: 737–746

    PubMed  CAS  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M and Umberger E (eds), pp 514–527. ASM Press, Washington D.C

    Google Scholar 

  • Kredich NM and Becker MA (1971) Cysteine biosynthesis: serine transacetylase and O-acetylserine sulfhydrylase (Salmonella typhimurium). In: Methods in enzymology, pp 459–471. Academic Press LTD, London, UK

    Google Scholar 

  • Kredich NM, Becker MA and Tomkins GM (1969) Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem 244: 2428–2439

    PubMed  CAS  Google Scholar 

  • Kredich NM, Foote LJ and Keenan BS (1973) The stoichiometry and kinetics of the inducible cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem 248: 6187–6196

    PubMed  CAS  Google Scholar 

  • Kredich NM, Keenan BS and Foote LJ (1972) The purification and subunit structure of cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem 247: 7157–7162

    PubMed  CAS  Google Scholar 

  • Kredich NM and Tomkins GM (1966) The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241: 4955–4965

    PubMed  CAS  Google Scholar 

  • Kumaran S and Jez JM (2007) Thermodynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase. Biochemistry 46: 5586–5594

    PubMed  CAS  Google Scholar 

  • Kuske CR, Hill KK, Guzman E and Jackson PJ (1996) Subcellular location of O-acetylserine sulfhydrylase isoenzymes in cell cultures and plant tissues of Datura innoxia Mill. Plant Physiol 112: 659–667

    PubMed  CAS  Google Scholar 

  • Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M and Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30: 95–106

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Ehrhardt D, Green L and Grossman A (1991) Isolation and characterization of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. J Bacteriol 173: 2751–2760

    PubMed  CAS  Google Scholar 

  • Leu LS and Cook PF (1994) Kinetic mechanism of serine transacetylase from Salmonella typhimurium. Biochemistry 33: 2667–2671

    PubMed  CAS  Google Scholar 

  • Liu F, Yoo B-C, Lee J-Y, Pan W and Harmon AC (2006) Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem 281: 27405–27415

    PubMed  CAS  Google Scholar 

  • Logan HM, Cathala N, Grignon C and Davidian JC (1996) Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem 271: 12227–12233

    PubMed  CAS  Google Scholar 

  • Lunn JE, Droux M, Martin J and Douce R (1990) Localization of ATP-sulfurylase and O-acetylserine(thiol) lyase in spinach leaves. Plant Physiol 94: 1345–1352

    PubMed  CAS  Google Scholar 

  • Maier TH (2003) Semisynthetic production of unnatural L-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 21: 422–427

    PubMed  CAS  Google Scholar 

  • Maruyama A, Ishizawa K and Takagi T (2000) Purification and characterization of β-cyanoalanine synthase and cysteine synthases from potato tubers: are β-cyanoalanine synthase and mitochondrial cysteine synthase same enzyme? Plant Cell Physiol 41: 200–208

    PubMed  CAS  Google Scholar 

  • Maruyama A, Ishizawa K, Takagi T and Esashi Y (1998) Cytosolic β-cyanoalanine synthase activity attributed to cysteine synthases in cocklebur seeds. Purification and characterization of cytosolic cysteine synthases. Plant Cell Physiol 39: 671–680

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T and Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132: 597–605

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K and Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18: 3235–3251

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T and Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42: 305–314

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T and Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38: 779–789

    PubMed  CAS  Google Scholar 

  • Mazel D and Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248

    PubMed  CAS  Google Scholar 

  • Melis A and Chen H-C (2005) Chloroplast sulfate transport in green algae – genes, proteins and effects. Photosynth Res 86: 299–307

    PubMed  CAS  Google Scholar 

  • Meyers DM and Ahmad S (1991) Link between L-3-cyanoalanine synthase activity and differential cyanide sensitivity of insects. Biochim Biophys Acta 1075: 195–197

    PubMed  CAS  Google Scholar 

  • Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A and Nakanishi K (1999) Purification and characterization of serine acetyltransferase from Escherichia coli partially truncated at the C-terminal region. Biosci Biotechnol Biochem 63: 168–179

    PubMed  CAS  Google Scholar 

  • Mino K, Yamanoue T, Sakiyama T, Eisaki N, Matsuyama A and Nakanishi K (2000a) Effects of bienzyme complex formation of cysteine synthetase from Escherichia coli on some properties and kinetics. Biosci Biotechnol Biochem 64: 1628–1640

    PubMed  CAS  Google Scholar 

  • Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A and Nakanishi K (2000b) Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotechnol Biochem 64: 1874–1880

    PubMed  CAS  Google Scholar 

  • Murakoshi I, Kaneko M, Koide C and Ikegami F (1986) Enzymatic synthesis of the neuroexcitatory amino acid quisqualic acid by the cysteine synthase. Phytochemistry 25: 2759–2763

    CAS  Google Scholar 

  • Nakamori S, Kobayashi SI, Kobayashi C and Takagi H (1998) Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64: 1607–1611

    PubMed  CAS  Google Scholar 

  • Neuenschwander U, Suter M and Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol. 97: 253–258

    PubMed  CAS  Google Scholar 

  • Nicholson ML, Gaasenbeek M and Laudenbach DE (1995) Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid. Mol Gen Genet 247: 623–632

    PubMed  CAS  Google Scholar 

  • Nicholson ML and Laudenbach DE (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR. J Bacteriol 177: 2143–2150

    PubMed  CAS  Google Scholar 

  • Niehaus A, Gisselmann G and Schwenn JD (1992) Primary structure of the Synechococcus PCC 7942 PAPS reductase gene. Plant Mol Biol 20: 1179–1183

    PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Daub CO, Hesse H, Willmitzer L and Hoefgen R (2005) Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J Exp Bot 56: 1887–1896

    PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Gakiere B, Kempa S, Adamik M, Willmitzer L, Hesse H and Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55: 1861–1870

    PubMed  CAS  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A and Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273: 32739–32745

    PubMed  CAS  Google Scholar 

  • Noji M and Saito K (2002) Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22: 231–243

    PubMed  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H and Saito K (2001a) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126: 973–980

    PubMed  CAS  Google Scholar 

  • Noji M, Takagi Y, Kimura N, Inoue K, Saito M, Horikoshi M, Saito F, Takahashi H and Saito K (2001b) Serine acetyltransferase involved in cysteine biosynthesis from spinach: molecular cloning, characterization and expression analysis of cDNA encoding a plastidic isoform. Plant Cell Physiol 42: 627–634

    PubMed  CAS  Google Scholar 

  • Ohkama N, Goto DB, Fujiwara T and Naito S (2002) Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol 43: 1266–1275

    PubMed  CAS  Google Scholar 

  • Olsen L, Huang B, Vetting M and Roderick S (2004) Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 43: 6013–6019

    PubMed  CAS  Google Scholar 

  • Peiser GD, Wang TT, Hoffman NE, Yang SF, Liu HW and Walsh CT (1984) Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci U S A 81: 3059–3063

    PubMed  CAS  Google Scholar 

  • Pye VE, Tingey AP, Robson RL and Moody PC (2004) The structure and mechanism of serine acetyltransferase from Escherichia coli. J Biol Chem 279: 40729–40736

    PubMed  CAS  Google Scholar 

  • Rabeh WM and Cook PF (2004) Structure and mechanism of O-acetylserine sulfhydrylase. J Biol Chem 279: 26803–26806

    PubMed  CAS  Google Scholar 

  • Raetz CR and Roderick SL (1995) A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270: 997–1000

    PubMed  CAS  Google Scholar 

  • Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C and Davies JP (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol 130: 2076–2084

    PubMed  CAS  Google Scholar 

  • Rege VD, Kredich NM, Tai CH, Karsten WE, Schnackerz KD and Cook PF (1996) A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry 35: 13485–13493

    PubMed  CAS  Google Scholar 

  • Rennenberg H (1983) Cysteine desulfhydrase activity in cucurbit plants: Stimulation by preincubation with L- or D-cysteine. Phytochemistry 22: 1557–1560

    CAS  Google Scholar 

  • Rennenberg H, Arabatzis N and Grundel I (1987) Cysteine desulphydrase activity in higher plants: Evidence for the action of L- and D-cysteine specific enzymes. Phytochemistry 26: 1583–1589

    CAS  Google Scholar 

  • Riemenschneider A, Bonacina E, Schmidt A and Papenbrock J (2005b) Isolation and characterization of a second D-cysteine desulfhydrase-like protein from Arabidopsis. In: Sulfur transport and assimilation in plants in the post genomic era, Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A and Rennenberg H (eds), pp 103–106. Backhuys Publishers, Leiden

    Google Scholar 

  • Riemenschneider A, Wegele R, Schmidt A and Papenbrock J (2005a) Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272: 1291–1304

    PubMed  CAS  Google Scholar 

  • Rolland N, Droux M and Douce R (1992) Subcellular distribution of O-acetylserine(thiol) lyase in cauliflower (Brassica oleracea L.) inflorescence. Plant Physiol 98: 927–935

    PubMed  CAS  Google Scholar 

  • Romero LC, Dominguez-Solis JR, Gutierrez-Alcala G and Gotor C (2001) Salt regulation of O-acetylserine (thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiol Biochem 39: 643–647

    CAS  Google Scholar 

  • RĂ¼egsegger A and Brunold C (1992) Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428–433

    PubMed  Google Scholar 

  • Ruffet ML, Droux M and Douce R (1994) Purification and kinetic properties of serine acetyltransferase free of O-acetylserine(thiol) lyase from spinach chloroplasts. Plant Physiol 104: 597–604

    PubMed  CAS  Google Scholar 

  • Ruffet ML, Lebrun M, Droux M and Douce R (1995) Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227: 500–509

    PubMed  CAS  Google Scholar 

  • Saidha T, Na SQ, Li JY and Schiff JA (1988) A sulphate metabolizing centre in Euglena mitochondria. Biochem J 253: 533–539

    PubMed  CAS  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3: 188–195

    PubMed  CAS  Google Scholar 

  • Saito K, Inoue K, Fukushima R and Noji M (1997) Genomic structure and expression analyses of serine acetyltransferase gene in Citrullus vulgaris (watermelon). Gene 189: 57–63

    PubMed  CAS  Google Scholar 

  • Saito K, Tatsuguchi K, Takagi Y and Murakoshi I (1994) Isolation and characterization of cDNA that encodes a putative mitochondrion-localizing isoform of cysteine synthase (O-acetylserine(thiol)-lyase) from Spinacia oleracea. J Biol Chem 269: 28187–28192

    PubMed  CAS  Google Scholar 

  • Saito K, Yokoyama H, Noji M and Murakoshi I (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem 270: 16321–16326

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H and Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8: 153–161

    PubMed  CAS  Google Scholar 

  • Schachtman DP and Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58: 47–69

    PubMed  CAS  Google Scholar 

  • Schiff S, Stern AI, Saidha T and Li J (1993) Some molecular aspects of sulfate metabolism in photosynthetic organisms. In: Sulfur nutrition and assimilation in higher plants. Regulatory, agricultural and environmental aspects, De Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WC (eds), SBP Academic, The Hague

    Google Scholar 

  • Schmidt A (1986) Regulation of sulfur metabolism in plants. Progr. Bot. 48: 133–150

    CAS  Google Scholar 

  • Schmidt A (1987) D-cysteine desulfhydrase from spinach. Methods Enzymol 143: 449–453

    CAS  Google Scholar 

  • Schmidt A (2005) Metabolic background of H2S release from plants. In: Sino-German workshop on aspects of sulfur nutrition of plants, De Kok LJ and Schnug E (eds), pp 121–129

    Google Scholar 

  • Schmidt A and Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Physiol Plant Mol Bio 43: 325–349

    CAS  Google Scholar 

  • Schnackerz KD, Tai CH, Simmons JW, 3rd, Jacobson TM, Rao GS and Cook PF (1995) Identification and spectral characterization of the external aldimine of the O-acetylserine sulfhydrylase reaction. Biochemistry 34: 12152–12160

    PubMed  CAS  Google Scholar 

  • Sirko A, Blaszczyk A and Liszewska F (2004) Overproduction of SAT and/or OASTL in transgenic plants: a survey of effects. J Exp Bot 55: 1881–1888

    PubMed  CAS  Google Scholar 

  • Smacchi E and Gobbetti M (1998) Purification and characterization of cystathionine γ-lyase from Lactobacillus fermentum DT41. FEMS Microbiol Lett 166: 197–202

    PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR and Warrilow AG (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875–884

    PubMed  CAS  Google Scholar 

  • Smythe CV (1945). Adv Enzymol 5: 237–247

    CAS  Google Scholar 

  • Staton AL and Mazelis M (1991) The C-S lyases of higher plants: homogenous β-cystathionase of spinach leaves. Arch Biochem Biophys 290: 46–50

    PubMed  CAS  Google Scholar 

  • Strambini G, Cioni P and Cook P (1996) Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway. Biochemistry 35: 8392–8400

    PubMed  CAS  Google Scholar 

  • Sugantino M and Roderick SL (2002) Crystal structure of Vat(D): an acetyltransferase that inactivates streptogramin group A antibiotics. Biochemistry 41: 2209–2216

    PubMed  CAS  Google Scholar 

  • Sun Q, Emanuelsson O and van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. Plant Physiol 135: 723–734

    PubMed  CAS  Google Scholar 

  • Tabe LM and Droux M (2001) Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol 126: 176–187

    PubMed  CAS  Google Scholar 

  • Tabe LM and Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128: 1137–1148

    PubMed  CAS  Google Scholar 

  • Tai CH, Nalabolu SR, Jacobson TM, Minter DE and Cook PF (1993) Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32: 6433–6442

    PubMed  CAS  Google Scholar 

  • Tai C, Nalabolu S, Simmons J, Jacobson T and Cook P (1995) Acid-base chemical mechanism of O-acetylserine sulfhydrylases-A and -B from pH studies. Biochemistry 34: 12311–12322

    PubMed  CAS  Google Scholar 

  • Tai CH, Yoon MY, Kim SK, Rege VD, Nalabolu SR, Kredich NM, Schnackerz KD and Cook PF (1998) Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the α-aminoacrylate intermediate. Biochemistry 37: 10597–10604

    PubMed  CAS  Google Scholar 

  • Takagi H, Kobayashi C, Kobayashi S and Nakamori S (1999) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of L-cysteine and L-cystine due to the desensitization to feedback inhibition. FEBS Lett 452: 323–327

    PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M and Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94: 11102–11107

    PubMed  CAS  Google Scholar 

  • Urano Y, Manabe T, Noji M and Saito K (2000) Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum. Gene 257: 269–277

    PubMed  CAS  Google Scholar 

  • Vaara M (1992) Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme. FEMS Microbiol Lett 76: 249–254

    PubMed  CAS  Google Scholar 

  • Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M and Pilon-Smits EA (2007) Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 104: 5686–5691

    PubMed  Google Scholar 

  • Vuorio R, Hirvas L and Vaara M (1991) The Ssc protein of enteric bacteria has significant homology to the acyltransferase Lpxa of lipid A biosynthesis, and to three acetyltransferases. FEBS Lett 292: 90–94

    PubMed  CAS  Google Scholar 

  • Warrilow A and Hawkesford M (1998) Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. J Exp Bot 49: 1625–1636

    CAS  Google Scholar 

  • Warrilow AG and Hawkesford MJ (2000) Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 51: 985–993

    PubMed  CAS  Google Scholar 

  • Wawrzynski A, Kopera E, Wawrzynska A, Kaminska J, Bal W and Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57: 2173–2182

    PubMed  CAS  Google Scholar 

  • Wirtz M and Hell R (2001) Recombinant production of cysteine and glutathione by expression of feedback-insensitive serine acetyltransferase in Escherichia coli. In Nachwachsende Rohstoffe fĂ¼r die Chemie–7. Symposium Dresden, pp 722–728. Landwirtschaftsverlag, MĂ¼nster

    Google Scholar 

  • Wirtz M and Hell R (2003a) Production of cysteine for bacterial and plant biotechnology: Application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24: 195–203

    PubMed  CAS  Google Scholar 

  • Wirtz M and Hell R (2003b) Comparative biochemical characterization of OAS-TL isoforms from Arabidopsis thaliana. Backhuys Publishers, Leiden

    Google Scholar 

  • Wirtz M and Droux M (2005) Synthesis of the sulfur amino acids: cysteine and methionine. Photosynth Res 86: 345–362

    PubMed  CAS  Google Scholar 

  • Wirtz M and Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163: 273–286

    PubMed  CAS  Google Scholar 

  • Wirtz M and Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19: 625–639

    PubMed  CAS  Google Scholar 

  • Wirtz M, Berkowitz O and Hell R (2000) Analysis of plant cysteine synthesis in vivo using E. coli as a host. In: Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects, Brunold C, Davidian J-C, De Kok L, Rennenberg H, Stulen I (eds), pp 297–298. P. Haupt, Bern

    Google Scholar 

  • Wirtz M, Droux M and Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55: 1785–1798

    PubMed  CAS  Google Scholar 

  • Wirtz M, Berkowitz O, Droux M and Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction. Eur J Biochem 268: 686–693

    PubMed  CAS  Google Scholar 

  • Woehl EU, Tai CH, Dunn MF and Cook PF (1996) Formation of the α-aminoacrylate immediate limits the overall reaction catalyzed by O-acetylserine sulfhydrylase. Biochemistry 35: 4776–4783

    PubMed  CAS  Google Scholar 

  • Xu XM and Moller SG (2006) AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J 25: 900–909

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T and Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and β-cyanoalanine synthase. Plant Cell Physiol 41: 465–476

    PubMed  CAS  Google Scholar 

  • Ye H, Abdel-Ghany SE, Anderson TD, Pilon-Smits EA and Pilon M (2006) CpSufE activates the cysteine desulfurase CpNifS for chloroplastic Fe-S cluster formation. J Biol Chem 281: 8958–8969

    PubMed  CAS  Google Scholar 

  • Ye H, Garifullina GF, Abdel-Ghany SE, Zhang L, Pilon-Smits EA and Pilon M (2005) The chloroplast NifS-like protein of Arabidopsis thaliana is required for iron-sulfur cluster formation in ferredoxin. Planta 220: 602–608

    PubMed  CAS  Google Scholar 

  • Yip WK and Yang SF (1988) Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol 88: 473–476

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Nakano Y, Amano A, Yoshimura M, Fukamachi H, Oho T and Koga T (2002) lcd from Streptococcus anginosus encodes a C-S lyase with ,-elimination activity that degrades L-cysteine. Microbiology 148: 3961–3970

    PubMed  CAS  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E and Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126: 1001–1011

    PubMed  CAS  Google Scholar 

  • Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O and Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryotic Cell 3: 1331–1348

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hell, R., Wirtz, M. (2008). Metabolism of Cysteine in Plants and Phototrophic Bacteria. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_4

Download citation

Publish with us

Policies and ethics