Skip to main content

Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

Sulfur is an essential nutrient for all organisms. The majority of sulfur in nature is found in inorganic form of sulfate, which has to be reduced and incorporated into bioorganic compounds. Assimilatory sulfate reduction occurs in various chemotrophic bacteria and fungi and in photosynthetic organisms, but is missing in animals and most prokaryotic and eukaryotic obligate parasites. Despite its central position in plant primary metabolism, the question of evolution of the pathway and origin of plant genes involved in sulfate assimilation has never been addressed. We have therefore made use of the vast amount of available sequence data to perform a phylogenetic analysis of sulfate assimilation genes from a range of lineages of photosynthetic organisms including photosynthetic bacteria, primary symbionts such as plants, green and red algae and various secondary and tertiary symbionts. The analysis revealed very complicated relations between the different lineages and different evolutionary histories of the individual genes of the pathway. Whereas, for example, plant sulfite reductase is clearly of a cyanobacterial origin, the other genes in the pathway, although being plastidial are, unusually, not of cyanobacterial origin. The clear separation between adenosine phosphosulfate- and phosphoadenosine phosphosulfate-reducing organisms seen in previous analyses has been lost with the inclusion of genes from diatom and cryptomonad secondary symbiont algae. In fact, a new variant of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase, lacking an iron sulfur cofactor, has been discovered. In addition, many interesting fusion proteins between various components of the pathway were uncovered in the newly sequenced algal genomes which open new exciting opportunities to improve the efficiency of the pathway or some of its reactions. In the chapter, protein phylogenies of seven enzymes of the pathway will be discussed in detail with relation to distribution of enzyme variants among prokaryotic and eukaryotic lineages, origin of plant genes, and the origin of genes in algae with secondary and tertiary plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abola AP, Willits MG, Wang RC and Long SR (1999) Reduction of adenosine-5′-phosphosulfate instead of 3′-phosphoadenosine-5′-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 181: 5280–5287

    PubMed  CAS  Google Scholar 

  • Archibald JM and Keeling PJ (2002) Recycled plastids: a green movement in eukaryotic evolution. Trends Genet 18: 577–584

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K and Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100: 7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86

    Article  PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T and Geilhorn B (1992) Sulfate metabolism in Entamoeba histolytica. Mol Biochem Parasitol 53: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Wollenberg M, Bill E, Mansilla MC, de Mendoza D, Seidler A and Schwenn JD (2004) Characterization and reconstitution of a 4Fe–4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis. J Biol Chem 279: 7850–7855

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Yoon HS and Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26: 50–60

    Article  PubMed  Google Scholar 

  • Bick JA, Aslund F, Chen Y and Leustek T (1998) Glutaredoxin function for the carboxyl-terminal domain of the ‘plant-type’ 5′-adenylylsulfate reductase. Proc Natl Acad Sci USA 95: 8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Dennis JJ, Zylstra GJ, Nowack J and Leustek T (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Bodyl A (2004) Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis. Plant Biol 6: 513–518

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova N and Hell R (1997) Cysteine synthesis in plants: protein–protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11: 251–262

    Article  PubMed  CAS  Google Scholar 

  • Bork C, Schwenn JD and Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Born TL, Franklin M and Blanchard JS (2000) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. Biochemistry 39: 8556–8564

    Article  PubMed  CAS  Google Scholar 

  • Brunold C (1990) Reduction of sulfate to sulfide. In: Rennenberg H, Brunold C, De Kok LJ and Stulen I (eds) Sulphur nutrition and sulphur assimilation in higher plants, pp 13–31. SPB Academic Publishing, The Hague, The Netherlands

    Google Scholar 

  • Brunold C and Schiff JA (1976) Studies of sulfate utilization by algae.15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization. Plant Physiol 57: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Brunold C and Suter M (1989) Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta 179: 228–234

    Article  CAS  Google Scholar 

  • Buchner P, Takahashi H and Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55: 1765–1773

    Article  PubMed  CAS  Google Scholar 

  • Carroll KS, Gao H, Chen H, Leary JA and Bertozzi CR (2005a) Investigation of the iron–sulfur cluster in Mycobacterium tuberculosis APS reductase: implications for substrate binding and catalysis. Biochemistry 44: 14647–14657

    Article  PubMed  CAS  Google Scholar 

  • Carroll KS, Gao H, Chen H, Stout CD, Leary JA and Bertozzi CR (2005b) A conserved mechanism for sulfonucleotide reduction. PLoS Biol 3: e250

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12: R62–R64

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote–eukaryote chimeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358: 109–134

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W and Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145: 627–635

    PubMed  CAS  Google Scholar 

  • Chesnick JM, Kooistra W, Wellbrock U and Medlin LK (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Euk Microbiol 44: 314–320

    Article  PubMed  CAS  Google Scholar 

  • Chu KH, Qi J, Yu ZG and Anh V (2004) Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol 21: 200–206

    Article  PubMed  CAS  Google Scholar 

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF and Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311: 1768–1770

    Article  PubMed  CAS  Google Scholar 

  • Crane BR, Siegel LM and Getzoff ED (1995) Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science 270: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Kredich NM, Deutzmann R and Trüper HG (1993) Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J Gen Microbiol 139: 1817–1828

    PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H and Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6: 361–375

    Article  PubMed  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R and Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS and Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18: 418–426

    PubMed  CAS  Google Scholar 

  • Fleischmann RD et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512

    Article  PubMed  CAS  Google Scholar 

  • Folch-Mallol JL, Marroqui S, Sousa C, Manyani H, Lopez-Lara IM, van der Drift KM, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink HP and Megias M (1996) Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant Microbe Interact 9: 151–163

    PubMed  CAS  Google Scholar 

  • Fritz G, Roth A, Schiffer A, Buchert T, Bourenkov G, Bartunik HD, Huber H, Stetter KO, Kroneck PM and Ermler U (2002) Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Proc Natl Acad Sci USA 99: 1836–1841

    Article  PubMed  CAS  Google Scholar 

  • Fulton JD and Grant PT (1956) The sulphur requirements of the erythrocytic form of Plasmodium knowlesi. Biochem J 63: 274–282

    PubMed  CAS  Google Scholar 

  • Gao Y, Schofield OM and Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol 123: 1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Goff SA et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137: 410–427

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI and Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and“APS reductase” activity. Proc Natl Acad Sci USA 93: 13377–13382

    Article  PubMed  CAS  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66: 165–185

    Article  PubMed  CAS  Google Scholar 

  • Harper JT and Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20: 1730–1735

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Lee S, Lee M, Leustek T and Saito K (2000a) Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 248: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K and Saito K (2000b) beta-cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123: 1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ and Wray JL (2000) Molecular genetics of sulphate assimilation. Adv Bot Res 33: 159–223

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Davidian J-C and Grignon C (1993) Sulfate proton cotransport in plasma vesicles isolated from roots of Brassica napus L. Increased transport in membranes isolated from sulphur starved plants. Planta 190: 297–304

    Article  CAS  Google Scholar 

  • Honke K and Taniguchi N (2002) Sulfotransferases and sulfated oligosaccharides. Med Res Rev 22: 637–654

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (1992) Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria. In: Carr NG and Mann NH (eds) Biotechnology handbook: photosynthetic prokaryotes, pp 53–92. Plenum Press, London, New York

    Google Scholar 

  • Inagaki Y, Doolittle WF, Baldauf SL and Roger AJ (2002) Lateral transfer of an EF-1 alpha gene: Origin and evolution of the large subunit of ATP sulfurylase in eubacteria. Curr Biol 12: 772–776

    Article  PubMed  CAS  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ and Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalysing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253: 237–247

    Article  PubMed  CAS  Google Scholar 

  • Kanno N, Nagahaisa E, Sato M and Sato Y (1996) Adenosine 5′-phosphosulfate sulfotransferase from the marine macroalga Porphyra yezoensis Ueda (Rhodophyta): stabilization, purification, and properties. Planta 198: 440–446

    Article  CAS  Google Scholar 

  • Kappler U and Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203: 1–9

    PubMed  CAS  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M and Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137: 220–230

    Article  PubMed  CAS  Google Scholar 

  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152: 279–290

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Rahman A, Bick JA, Conover RC, Johnson MK, Mason JT, Hirasawa M, Leustek T and Knaff DB (2004) Properties of the cysteine residues and iron–sulfur cluster of the assimilatory 5′-adenylyl sulfate reductase from Pseudomonas aeruginosa. Biochemistry 43: 13478–13486

    Article  PubMed  CAS  Google Scholar 

  • Klonus D, Hofgen R, Willmitzer L and Riesmeier JW (1994) Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Plant J 6: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K and Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta 705: 348–356

    PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S and Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55: 1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S and Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55: 1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Weber M, Suter M, Benda R, Schaller J, Feller U, Schürmann P, Schünemann V, Trautwein AX, Kroneck PMH and Brunold C (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron–sulfur protein. J Biol Chem 276: 42881–42886

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH and Brunold C (2002). The presence of an iron–sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilising adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277: 21786–21791

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Fritzemeier K, Wiedemann G and Reski R (2007) The putative moss 3′phosphoadenosine 5′phosphosulfate reductase is a novel form of adenosine 5′phosphosulfate reductase without iron sulfur cluster. J Biol Chem 282: 22930–22938

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Melzer M, von Ballmoos P, Mandel T, Brunold C and Kopriva S (2001) Assimilatory sulfate reduction in C3, C3–C4, and C4 species of Flaveria. Plant Physiol 127: 543–550

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Meyer A, Schween G, Herschbach C, Reski R and Kopriva S (2002) Functional knockout of the adenosine 5′phosphosulfate reductase gene in Physcomitrella patens revives an old route of sulfate assimilation. J Biol Chem 277: 32195–32201

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1971) Regulation of L-cysteine biosynthesis in Salmonella typhimurium. J Biol Chem 246: 3474–3484

    PubMed  CAS  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhart FC et al. (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, pp 514–527. ASM Press, Washington, DC

    Google Scholar 

  • Krueger RJ and Siegel LM (1982) Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 21: 2892–2904

    Article  PubMed  CAS  Google Scholar 

  • Laudenbach DE and Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol 173: 2739–2750

    PubMed  CAS  Google Scholar 

  • Leipe DD, Koonin EV and Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333: 781–815

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141–165

    Article  PubMed  CAS  Google Scholar 

  • Leyh TS, Taylor JC and Markham GD (1988) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem 263: 2409–2416

    PubMed  CAS  Google Scholar 

  • Li JY and Schiff JA (1991) Purification and properties of adenosine 5′-phosphosulphate sulphotransferase from Euglena. Biochem J 274: 355–360

    PubMed  CAS  Google Scholar 

  • Lillig CH, Prior A, Schwenn JD, Åslund F, Ritz D, Vlamis-Gardikas A and Holmgren A (1999) New thioredoxins and glutaredoxins as electron donors of 3′-phosphoadenylylsulfate reductase. J Biol Chem 274: 7695–7698

    Article  PubMed  CAS  Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F and Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013–11018

    Article  PubMed  CAS  Google Scholar 

  • Lunn J, Droux M, Martin J and Douce R (1990) Localization of ATP sulfurylase and O-acetylserine (thiol) lyase in spinach leaves. Plant Physiol 94: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Rose AB and Segel IH (1998) Adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum site-directed mutagenesis at putative phosphoryl-accepting and ATP P-loop residues. J Biol Chem 273: 28583–28589

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH and Fisher AJ (2000) Crystal structure of adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry 39: 1613–1621

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH and Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochemistry 40: 6795–6804

    Article  PubMed  CAS  Google Scholar 

  • Maier TH (2003) Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 21: 422–427

    Article  PubMed  CAS  Google Scholar 

  • Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81: 1499–1533

    PubMed  CAS  Google Scholar 

  • Martin W and Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolutionary analysis Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Maruyama A, Ishizawa K and Takagi T (2000) Purification and characterization of beta-cyanoalanine synthase and cysteine synthases from potato tubers: are beta-cyanoalanine synthase and mitochondrial cysteine synthase same enzyme? Plant Cell Physiol 41: 200–208

    PubMed  CAS  Google Scholar 

  • Matsuzaki M, et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951–959

    Article  Google Scholar 

  • Mougous JD, Senaratne RH, Petzold CJ, Jain M, Lee DH, Schelle MW, Leavell MD, Cox JS, Leary JA, Riley LW and Bertozzi CR (2006) A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 4258–4263

    Article  PubMed  CAS  Google Scholar 

  • Murillo M and Leustek T (1995) Adenosine-5′-triphosphate-sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5′-triphosphate-sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Akashi T and Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A, and De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166–1173

    PubMed  CAS  Google Scholar 

  • Nozaki T, Ali V and Tokoro M (2005) Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 60: 1–99

    Article  PubMed  Google Scholar 

  • Obornik M and Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22: 2343–2353

    Article  PubMed  CAS  Google Scholar 

  • Olsen LR, Huang B, Vetting MW and Roderick SL (2004) Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. Biochemistry 43: 6013–6019

    Article  PubMed  CAS  Google Scholar 

  • Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J and Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15: 1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Rogers MB and Keeling PJ (2004) Gene replacement of fructose-1, 6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM and Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348: 1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF and Keeling PJ (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357: 1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Payne SH and Loomis WF (2006) Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot Cell 5: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Perez-Jimenez JR and Kerkhof LJ (2005) Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl Environ Microbiol 71: 1004–1011

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Duyvis MG, van Helvoort JMLM, Wolbert RBG and Hagen WR (1992) The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem 205: 111–115

    Article  PubMed  CAS  Google Scholar 

  • Prior A, Uhrig JF, Heins L, Wiesmann A, Lillig CH, Stoltze C, Soll J and Schwenn JD (1999) Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures. Biochim Biophys Acta 1430: 25–38

    PubMed  CAS  Google Scholar 

  • Rausch T and Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10: 503–509

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H and Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15: 1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal E and Leustek T (1995) A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene 165: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Rotte C and Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5′-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialised functions. Plant Physiol 124: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Saidha T, Na SQ, Li JY and Schiff JA (1988) A sulphate metabolising centre in Euglena mitochondria. Biochem J 253: 533–539

    PubMed  CAS  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136: 2443–2450

    Article  PubMed  CAS  Google Scholar 

  • Sakharkar KR, Dhar PK and Chow VT (2004) Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. Int J Syst Evol Microbiol 54: 1937–1941

    Article  PubMed  CAS  Google Scholar 

  • Sánchez Puerta MW, Bachvaroff TV and Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi: a comparison to other plastid genomes DNA Res 12: 151–156

    Article  PubMed  Google Scholar 

  • Sato N, Nakayama M and Hase T (2001) The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Lett 487: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A (1972) On the mechanism of photosynthetic sulfate reduction. An APS-sulfotransferase from Chlorella. Arch Microbiol 84: 77–86

    CAS  Google Scholar 

  • Schmidt A (1975) Distribution of the APS-sulfotransferase activity among higher plants. Plant Sci Lett 5: 407–415

    Article  CAS  Google Scholar 

  • Schmidt A (1977) Assimilatory sulfate reduction via 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) in blue-green algae. FEMS Microbiol Lett 1: 137–140

    CAS  Google Scholar 

  • Schmidt A and Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 325–349

    Article  CAS  Google Scholar 

  • Schmidt A and Trüper HG (1977) Reduction of adenylylsulfate and 3′-phosphoadenylylsulfate in phototrophic bacteria. Experientia 33: 1008–1009

    Article  PubMed  CAS  Google Scholar 

  • Schwartzbach SD, Osafune T and Loffelhardt W (1998) Protein import into cyanelles and complex chloroplasts. Plant Mol Biol 38: 247–263

    Article  PubMed  CAS  Google Scholar 

  • Setya A, Murillo M and Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylsulfate reductase. Proc Natl Acad Sci USA 93: 13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D and Bock A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172: 3351–3357

    PubMed  CAS  Google Scholar 

  • Sperling D, Kappler U, Wynen A, Dahl C and Truper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Sulli C, Fang Z, Muchhal U and Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem 274: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F and Chisholm SW (2005) Three prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biology 3: 790–806

    Article  CAS  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, Op den Camp R, Schaller J, Kuhlemeier C, Schürmann P and Brunold C (2000) Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes. J Biol Chem 275: 930–936

    Article  PubMed  CAS  Google Scholar 

  • Stafleu FA, Bonner CEB, McVaugh R, Meikle RD, Rollins RC, Ross R and Voss EG (eds) (1972) International Code of Botanical Nomenclature. A. Oosthoek, Utrecht, The Netherlands

    Google Scholar 

  • Stahl DA, Fishbain S, Klein M, Baker BJ and Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie Van Leeuwenhoek 81: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24: 539–577

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Yoshioka K, Awano N, Nakamori S and Ono B (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218: 291–297

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Article  Google Scholar 

  • Tsang ML, Goldschmidt EE and Schiff JA (1971) Adenosine-5′-phosphosulfate (APS35) as an intermediate in the conversion of adenosine-3′-phosphate-5′-phosphosulfate (PAPS35) to acid volatile radioactivity. Plant Physiol 47 Suppl 20

    Google Scholar 

  • Ullrich TC, Blaesse M and Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20: 316–329

    Article  PubMed  CAS  Google Scholar 

  • Van de Kamp M, Schuurs TA, Vos A, Van der Lende TR, Konings WN and Driessen AJM (2000) Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 66: 4536–4538

    Article  PubMed  Google Scholar 

  • van Dooren GG, Schwartzbach SD, Osafune T and McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541: 34–53

    Article  PubMed  Google Scholar 

  • Varin L, Marsolais F, Richard M and Rouleau M (1997) Sulfation and sulfotransferases 6: biochemistry and molecular biology of plant sulfotransferases. FASEB J 11: 517–525

    PubMed  CAS  Google Scholar 

  • Venkatachalam KV (2003) Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55: 1–11

    PubMed  CAS  Google Scholar 

  • Waller RF, Patron NJ and Keeling PJ (2006) Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 56: 1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, Reed MB, Cowman AF and McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19: 1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Warrilow AGS and Hawkesford MJ (2000) Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 51: 985–993

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB (2001) The cyanobacteria—isolation, purification, and identification. In: Dworkin M et al. (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edition, release 3.7, November 2, 2001, Springer, New York, http://link.springer-ny.com/link/service/books/10125/

  • Weber M, Suter M, Brunold C and Kopriva S (2000) Sulfate assimilation in higher plants: characterization of a stable intermediate in the adenosine 5′-phosphosulfate reductase reaction. Eur J Biochem 267: 3647–3653

    Article  PubMed  CAS  Google Scholar 

  • Williams SJ, Senaratne RH, Mougous JD, Riley LW and Bertozzi CR (2002) 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 277: 32606–32615

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Berkowitz O, Droux M and Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein–protein interaction. Eur J Biochem 268: 686–693

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Droux M and Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55: 1785–1798

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Ashikari T, Tanaka Y, Kusumi T and Hase T. (1998) Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis. J Biochem 124: 615–621

    PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G and Bhattacharya D (2002a) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99: 15507–15512

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD and Bhattacharya D (2002b) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99: 11724–11729

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92

    Article  PubMed  CAS  Google Scholar 

  • Yurkov VV and Beatty JT (1998). Aerobic anoxygenic phototrophic bacteria. Microbiol Molec Biol Rev 62: 695–724

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Kopriva, S., Patron, N.J., Keeling, P., Leustek, T. (2008). Phylogenetic Analysis of Sulfate Assimilation and Cysteine Biosynthesis in Phototrophic Organisms. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_3

Download citation

Publish with us

Policies and ethics