Skip to main content

X-ray Absorption Spectroscopy as Tool for the Detection and Identification of Sulfur Compounds in Phototrophic Organisms

  • Chapter
Sulfur Metabolism in Phototrophic Organisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

X-ray absorption spectroscopy (XAS) is an in situ technique which combines the advantages of a local probe technique with the high penetration strength inherent to X-rays, such as no need for long range order and the ability to obtain information on selected sites of a given sample only. Therefore, this technique is applicable to a broad variety of scientific topics, including many applications to elucidate the chemical speciation of sulfur in phototrophic organisms. The first part of the chapter provides an elementary introduction to the physical background and method, whose application to a broad variety of problems is discussed in detail, followed by detailed examples and explanations on X-ray absorption near edge structure (XANES) measurements of sulfur compounds. In the second part, examples of successful applications of XANES analyses of bacterial sulfur globules of purple and green sulfur bacteria, the wheat gluten network, and sulfur in host–plant interactions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabayov B, Doonan CJ, Pickering IJ, George GN and Sagi I (2005) Using softer X-ray absorption spectroscopy to probe biological systems. J Synchrotron Rad 12: 392–401

    Article  CAS  Google Scholar 

  • Ankudinov AL, Ravel B, Rehr JJ and Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys Rev B 58: 7565–7576

    Article  CAS  Google Scholar 

  • Beauchemin S, Hesterberg D and Beauchemin M (2002) Principal component analysis approach of modeling sulfur K-XANES spectra in humic acids. Soil Sci Soc Amer J 66: 83–91

    Article  CAS  Google Scholar 

  • Behrens P (1992a) X-ray absorption spectroscopy in chemistry. II. X-ray absorption near edge structure. Trends Anal Chem 11: 237–244

    Article  CAS  Google Scholar 

  • Behrens P (1992b) X-ray absorption spectroscopy in chemistry. I. Extended X-ray absorption fine structure. Trends Anal Chem 11: 218–222

    Article  CAS  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    Article  PubMed  CAS  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 847–870. Kluwer Academic, Dordrecht

    Google Scholar 

  • Capehart TW, Herbst JF, Mishra RK and Pinkerton FE (1995) X-ray absorption edge shifts in rare-earth- transition metal compounds. Phys Rev B 52: 7907–7914

    Article  CAS  Google Scholar 

  • Chauvistré R, Hormes J, Hartmann E, Etzenbach N, Hosch R and Hahn J (1997) Sulfur K-shell photoabsorption spectroscopy of the sulfanes R-S n -R, n = 2–4. Chem Phys 223: 293–302

    Article  Google Scholar 

  • Dahl C and Prange A (2006) Bacterial sulfur globules: Occurrence, structure and metabolism. In: Shively M (ed) Inclusions in Prokaryotes, chapter 2. Series “Microbiology Monographs”, pp 21–51. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  • Dahl C, Prange A and Steudel R (2002) Metabolism of natural polymeric sulfur compounds. In: Steinbüchel A and Matsumura S (eds) Biopolymers, Vol 6, Miscellaneous Biopolymers and Biodegradation of Synthetic Polymers, pp 35–62. Wiley-VCH, Weinheim

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82: 70–77

    Article  PubMed  CAS  Google Scholar 

  • Flemming B, Modrow H, Hallmeier K-H, Hormes J, Reinhold J and Szargan R (2001) Sulfur in different chemical surroundings – S K XANES spectra of sulfur-containing heterocycles and their quantum-chemically supported interpretation. Chem Phys 270: 405–413

    Article  Google Scholar 

  • Franz B, Lichtenberg H, Hormes J, Modrow H, Dahl C and Prange A (2007) Utilization of solid ‘elemental’ sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: A sulfur K-edge X-ray absorption spectroscopy study. Microbiology-SGM 153: 1268–1274

    Article  CAS  Google Scholar 

  • George GN, Pickering IJ, Yu EY and Prince RC (2002) X-ray absorption spectroscopy of bacterial sulfur globules. Microbiology 148: 2267–2268

    PubMed  CAS  Google Scholar 

  • Grosch W and Wieser H (1999) Redox reactions in wheat dough as affected by ascorbic acid. J Cereal Sci 29: 1–16

    Article  CAS  Google Scholar 

  • Guerrero R, Mas J and Pedrós-Alió C (1984) Buoyant density changes due to intercellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Arch Microbiol 137: 350–356

    Article  Google Scholar 

  • Hageage Jr GJ, Eanes ED and Gherna RL (1970) X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol 101: 464–469

    PubMed  CAS  Google Scholar 

  • Henschen A (1986) Analysis of cyst(e) ine residues, disulfide bridges and sulfhydryl groups in proteins. In: Wittmann-Liebold B, Salnikow J and Erdmann VA (eds) Advanced Methods in Protein Microsequence Analysis, pp 244–255. Springer, Berlin

    Google Scholar 

  • Hormes J and Modrow H (2003) X-ray absorption spectroscopy for the analysis of hydrocarbons and their chemistry In: Hsu CS (ed) Analytical Advances for Hydrocarbon Research, pp 421–454. Kluwer Academic/Plenum, Dordrecht

    Google Scholar 

  • Johnson RL (1983) Grating monochromators and optics for the VUV and soft X-ray region. In: Koch E (ed) Handbook on Synchrotron Radiation, Vol 1a, pp 173–260. North Holland, Amsterdam, New York

    Google Scholar 

  • Kleinjan, W. E., de Keizer, A. and Janssen, A. J. H. (2003) Biologically produced sulfur In: Steudel R (ed) Elemental Sulfur and Sulfur-rich Compounds I, pp 167–187. Springer, Berlin

    Google Scholar 

  • Köhler P, Belitz H-D and Wieser H (1991) Disulphide bonds in wheat gluten: Isolation of a cystine peptide from glutenin. Z Lebens Unter Forsch 192: 234–239

    Article  Google Scholar 

  • Koningsberger DC and Prins R (eds) (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  • Lemonnier M, Collet O, Depautex C, Esteva JM and Raoux D (1978) High vacuum two crystal soft X-ray monochromator. Nucl Instr Meth A 152: 109–111

    Article  CAS  Google Scholar 

  • Lichtenberg H, Prange A, Modrow H and Hormes J (2007) Characterization of sulfur compounds in coffee beans by sulfur K-XANES spectroscopy. Amer Inst Phys Proc 882: 824–826

    CAS  Google Scholar 

  • Modrow H (1999) Möglichkeiten und Grenzen der quantitativen Analyse von Röntgenabsorptionsspektren und ihre Anwendung auf Vulkanisation und thermo-oxidative Alterung von Kautschuken. PhD thesis, University of Bonn, Germany (in German)

    Google Scholar 

  • Modrow H (2004) Tuning nanoparticle properties – the X-ray absorption spectroscopic point of view. Appl Spect Rev 39: 183–290

    Article  CAS  Google Scholar 

  • Modrow H, Hormes J, Visel F and Zimmer R (2001) Monitoring thermal oxidation of sulfur crosslinks in SBR eleastomers by quantitative analysis of sulfur K-edge XANES spectra. Rubber Chem Technol 74: 281–294

    CAS  Google Scholar 

  • Pantelouris A, Modrow H, Pantelouris M, Hormes J and Reinen D (2004) The influence of coordination geometry and valency on the Cr K-edge XANES spectra of selected chromium compounds. Chem Phys 300: 13–22

    Article  CAS  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG and Dahl C (1998) Molecular genetic evidence for extracytoplasmatic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169: 434–444

    Article  PubMed  CAS  Google Scholar 

  • Penner-Hahn JE (2005) Characterization of “spectroscopically quiet” metals in biology. Coord Chem Rev 249: 161–177

    Article  CAS  Google Scholar 

  • Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, Beatty JT and Prince RC (2001) Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry 40: 8138–8145

    Article  PubMed  CAS  Google Scholar 

  • Prange A and Modrow H (2002) X-ray absorption spectroscopy and its application in biological, agricultural and environmental research. Rev Environ Sci Biotechnol 1: 259–276

    Article  CAS  Google Scholar 

  • Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C and Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428: 446–454

    PubMed  CAS  Google Scholar 

  • Prange A, Kühlsen N, Birzele B, Arzberger I, Hormes J, Antes S and Köhler P (2001) Sulfur in wheat gluten: In situ analysis by X-ray absorption near edge structure (XANES) spectroscopy. Eur Food Res Technol 212: 570–575

    Article  CAS  Google Scholar 

  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG and Dahl C (2002a) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology 148: 267–276

    PubMed  CAS  Google Scholar 

  • Prange A, Dahl C, Trüper HG, Behnke M, Hahn J, Modrow H and Hormes J (2002b) Investigation of S-H bonds in biologically important compounds by sulfur K-edge X-ray absorption spectroscopy. Eur Phys J D 20: 589–596

    Article  CAS  Google Scholar 

  • Prange A, Dahl C, Trüper HG, Chauvistré R, Modrow H and Hormes J (2002c) X-ray absorption spectroscopy of bacterial sulfur globules: a detailed reply. Microbiology 148: 2268–2270

    CAS  Google Scholar 

  • Prange A, Birzele B, Krämer J, Modrow H, Chauvistré R, Hormes J and Köhler P (2003) Characterization of sulfur speciation in low molecular weight subunits of glutenin after reoxidation with potassium iodate and potassium bromate at different pH values using X-ray absorption near-edge structure (XANES) spectroscopy. J Agric Food Chem 51: 7431–7438

    Article  PubMed  CAS  Google Scholar 

  • Prange A, Modrow H, Hormes J, Krämer J and Köhler P (2005a) Influence of mycotoxin producing fungi (Fusarium, Aspergillus, Penicillium) on gluten proteins during suboptimal storage of wheat after harvest and competitive interactions between field and storage fungi. J Agric Food Chem 53: 6930–6938

    Article  PubMed  CAS  Google Scholar 

  • Prange A, Hindorf H, Bianchetti CM, Tittsworth RC, Lichtenberg H, Modrow H and Hormes J (2005b) In situ analysis of sulfur in coffee by X-ray absorption near edge structure (XANES) spectroscopy: “A first impression of changes in sulfur speciation in green coffee and during roasting and brewing”. In: Broussard LA and Scott JD (eds) CAMD 2004 Annual Report, pp 84–87. Center for Advanced Microstructures and Devices, Baton Rouge, LA, USA

    Google Scholar 

  • Prange A, Oerke E-C, Steiner U, Bianchetti CM, Hormes J and Modrow H (2005c) Spatially resolved sulfur K-edge XANES spectroscopy for the in situ-characterization of the fungus-plant interaction Puccinia triticina and wheat leaves. J Phytopathol 153: 627–632

    Article  CAS  Google Scholar 

  • Rehr JJ and Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72: 621–654

    Article  CAS  Google Scholar 

  • Sayers DE, Stern EA and Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Phys Rev Lett 27: 1204–1207

    Article  CAS  Google Scholar 

  • Schulze DG and Bertsch PM (1995) Synchrotron X-ray techniques in soil, plant, and environmental research. Adv Agronom 55: 1–66

    Article  CAS  Google Scholar 

  • Shewry PR and Miflin BJ (1985) Seed storage proteins of economically important cereals. In: Pomeranz Y (ed) Advances in Cereal Science and Technology VII, pp 1–83. American Association of Cereal Chemists: St. Paul, Minnesota

    Google Scholar 

  • Shewry PR and Tatham AS (1997) Disulphide bonds in wheat gluten proteins. J Cereal Sci 25:207–227

    Article  CAS  Google Scholar 

  • Steudel R (2000) The chemical sulfur cycle. In: Lens P and Hulshof Pol L (eds) Environmental Technologies to Treat Sulfur Pollution, pp 1–32. IWA Publishing, London

    Google Scholar 

  • Steudel R and Albertsen A (1999) The chemistry of aqueous sulfur sols–models for bacterial sulfur globules? In: Steinbüchel A (ed) Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers, pp 17–26. Wiley-VCH, Weinheim

    Google Scholar 

  • Stoehr J, Sette F and Johnson AL (1984) Near-edge X-ray absorption fine-structure studies of chemisorbed hydrocarbons – Bond lengths with a ruler. Phys Rev Lett 53: 1684–1687

    Article  Google Scholar 

  • Stoehr J (1996) NEXAFS Spectroscopy. Springer Series in Surface Sciences Vol. 25, Springer, Berlin

    Google Scholar 

  • Trüper HG (1984) Microorganisms and the sulfur cycle. In: Müller A and Krebs B (eds) Sulfur, its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology, pp 351–365. Elsevier SciencePublishers B.V., Amsterdam

    Google Scholar 

  • Vairavamurthy A (1998) Using X-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim Acta A 54: 2009–2017

    Article  Google Scholar 

  • van Niel CB (1931) On the morphology and physiology of the purple and green sulfur bacteria. Arch Mikrobiol 3: 1–112

    Article  CAS  Google Scholar 

  • von Busch F, Hormes J, Modrow H and Nestmann MB (2003) Interaction of atomic core electrons with the molecular valence shell. In: Peyerimhoff SD (ed) Interactions in Molecules – Electronic and Steric Effects, pp 193–254. Wiley-VCH, Weinheim

    Google Scholar 

  • Wieser H, Seilmeier W and Belitz H-D (1991) Klassifizierung der Proteinkomponenten des Weizenklebers. Getreide, Mehl und Brot 45: 35–38 (in German)

    CAS  Google Scholar 

  • Winogradsky SN (1887) Über Schwefelbakterien. Bot Ztg 45:489–508 (in German)

    Google Scholar 

  • Yachandra VK (1995) X-ray absorption spectroscopy and applications in structural biology. Meth Enzymol 246: 638–675

    Article  PubMed  CAS  Google Scholar 

  • Yu EY, Pickering IJ, George GN and Prince RC (2001) In situ observation of the generation of isothiocyanates from sinigrin in horseradish and wasabi. Biochim Biophys Acta 1527: 156–160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Prange, A., Hormes, J., Modrow, H. (2008). X-ray Absorption Spectroscopy as Tool for the Detection and Identification of Sulfur Compounds in Phototrophic Organisms. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_23

Download citation

Publish with us

Policies and ethics