The State of Sulfur Metabolism in Algae: From Ecology to Genomics

  • Nakako Shibagaki
  • Arthur Grossman
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 27)

Sulfur, primarily in the form of sulfate, is transported into algal and plant cells and reduced to sulfide in the chloroplast. Both sulfate and sulfide can be incorporated into a variety of sulfur-containing compounds critical for protein, lipid and polysaccharide synthesis, as well as signaling molecules. Most of our current knowledge about sulfur metabolism and the acclimation of photosynthetic organisms to conditions of sulfur deprivation, especially at the molecular level, are from studies that have exploited the model plant Arabidopsis thaliana, or the freshwater alga Chlamydomonas reinhardtii. However, there are also novel aspects of the biosynthesis and function of sulfur metabolites, especially volatile metabolites synthesized by marine algae that might have antifreeze and antioxidant functions and also influence global features of climate. This chapter describes sulfate assimilation in algae and the adaptation and acclimation of algae to changing sulfur environments.


Vascular Plant Marine Alga Sulfur Metabolism Cloud Condensation Nucleus Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera, A. and Amils, R. (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat Toxicol, 75, 316–329.PubMedCrossRefGoogle Scholar
  2. Anantharaman, V., Koonin, E.V. and Aravind, L. (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol, 307, 1271–1292.PubMedCrossRefGoogle Scholar
  3. Andreae, M.O. and Crutzen, P.J. (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 276, 1052–1058.CrossRefGoogle Scholar
  4. Andreae, M.O. and Raemdonch, H., 1983. (1983) Dimethyl sulfide in the surface ocean and the marine atmosphere – A global view. Science, 221, 744.PubMedCrossRefGoogle Scholar
  5. Antal, T.K. and Lindblad, P. (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol, 98, 114–120.CrossRefGoogle Scholar
  6. Arz, H.E., Gisselmann, G., Schiffmann, S. and Schwenn, J.D. (1994) A cDNA for adenylyl sulphate (APS)-kinase from Arabidopsis thaliana. Biochim Biophys Acta, 1218, 447–452.PubMedGoogle Scholar
  7. Ashida, H., Sawa, Y. and Shibata, H. (2005) Cloning, biochemical and phylogenetic characterizations of gamma-glutamylcysteine synthetase from Anabaena sp. PCC 7120. Plant Cell Physiol, 46, 557–562.PubMedCrossRefGoogle Scholar
  8. Aviles, C., Torres-Marquez, M.E., Mendoza-Cozatl, D. and Moreno-Sanchez, R. (2005) Time-course development of Cd2+ hyper-accumulating phenotype in Euglena gracilis. Arch Microbiol, 184, 83–92.PubMedCrossRefGoogle Scholar
  9. Bacic, M.K. and Yoch, D.C. (1998) In vivo characterization of dimethylsulfoniopropionate lyase in the fungus Fusarium lateritium. Appl Environ Microbiol, 64, 106–111.PubMedGoogle Scholar
  10. Ball, S.G., Dirick, L., Decq, A., Martiat, J.C. and Matagne, R.F. (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci, 66, 1–9.CrossRefGoogle Scholar
  11. Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P. and Buchanan, B.B. (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A, 100, 370–375.PubMedCrossRefGoogle Scholar
  12. Barnes, I., Becker, K.H. and Patroescu, I. (1994) The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide. Geophys Res Lett, 21, 2389.CrossRefGoogle Scholar
  13. Bates, T.S., Cline, J.D., Gammon, R.H. and Kelly-Hansen, S. (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. J Geophys Res, 92, 2930–2938.CrossRefGoogle Scholar
  14. Baudouin-Cornu, P., Surdin-Kerjan, Y., Marliere, P. and Thomas, D. (2001) Molecular evolution of protein atomic composition. Science, 293, 297–300.PubMedCrossRefGoogle Scholar
  15. Beeor-Tzahar, T., Ben-Hayyim, G., Holland, D. and Faltin, Z. (1995) A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett, 366, 151–155.PubMedCrossRefGoogle Scholar
  16. Benning, C. (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu Rev Plant Physiol Plant Mol Biol, 49, 53–75.PubMedCrossRefGoogle Scholar
  17. Bick, J.A., Dennis, J.J., Zylstra, G.J., Nowack, J. and Leustek, T. (2000) Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol, 182, 135–142.PubMedCrossRefGoogle Scholar
  18. Bolling, C. and Fiehn, O. (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol, 139, 1995–2005.PubMedCrossRefGoogle Scholar
  19. Bouarab, K., Potin, P., Correa, J. and Kloareg, B. (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell, 11, 1635–1650.PubMedCrossRefGoogle Scholar
  20. Buchanan, B.B. and Balmer, Y. (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol, 56, 187–220.PubMedCrossRefGoogle Scholar
  21. Buchner, P., Takahashi, H. and Hawkesford, M.J. (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot, 55, 1765–1773.PubMedCrossRefGoogle Scholar
  22. Buetow, D.E. and Buchanan, P.J. (1964) Isolation of mitochondria from Euglena gracilis. Exp Cell Res, 36, 204–207.PubMedCrossRefGoogle Scholar
  23. Callow, M.E. and Evans, L.V. (1979) Polyphosphate accumulation in sulphur-starved cells of Rhodella maculata. Br Phycol J, 14, 327–337.CrossRefGoogle Scholar
  24. Cantoni, G.L. and Anderson, D.G. (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem, 222, 171–177.PubMedGoogle Scholar
  25. Casagrande, S., Bonetto, V., Fratelli, M., Gianazza, E., Eberini, I., Massignan, T., Salmona, M., Chang, G., Holmgren, A. and Ghezzi, P. (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A, 99, 9745–9749.PubMedCrossRefGoogle Scholar
  26. Challenger, F. and Simpson, M.I. (1948) Studies on biological methylation. Part XII. A precursor of dimethyl sulfide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethyl sulphonium hydroxide and its salts. J Chem Soc, 1948, 1591–1597.CrossRefGoogle Scholar
  27. Charlson, R.J., Lovelock, J.E., Andreae, M.O. and Warren, S.G. (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655–661.CrossRefGoogle Scholar
  28. Chen, H.C. and Melis, A. (2004) Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta, 220, 198–210.PubMedCrossRefGoogle Scholar
  29. Chen, H.C., Newton, A.J. and Melis, A. (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res, 84, 289–296.PubMedCrossRefGoogle Scholar
  30. Chen, H.C., Yokthongwattana, K., Newton, A.J. and Melis, A. (2003) SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta, 218, 98–106.PubMedCrossRefGoogle Scholar
  31. Clemens, S. (2006) Evolution and function of phytochelatin synthases. J Plant Physiol, 163, 319–332.PubMedCrossRefGoogle Scholar
  32. Coates, J.B., Medeiros, J.S., Thanh, V.H. and Nielsen, N.C. (1985) Characterization of the subunits of beta-conglycinin. Arch Biochem Biophys, 243, 184–194.PubMedCrossRefGoogle Scholar
  33. Cohen, I., Knopf, J.A., Irihimovitch, V. and Shapira, M. (2005) A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and its subunit expression. Plant Physiol, 137, 738–746.PubMedCrossRefGoogle Scholar
  34. Cohen, I., Sapir, Y. and Shapira, M. (2006) A conserved mechanism controls translation of Rubisco large subunit in different photosynthetic organisms. Plant Physiol, 141, 1089–1097.PubMedCrossRefGoogle Scholar
  35. Collier, J.L. and Grossman, A.R. (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol, 174, 4718–4726.PubMedGoogle Scholar
  36. Collier, J.L. and Grossman, A.R. (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. Embo J, 13, 1039–1047.PubMedGoogle Scholar
  37. Copley, S.D. and Dhillon, J.K. (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol, 3, research0025.Google Scholar
  38. Craigie, J. (1990) Cells walls. In Cole, K. and Sheath, R. (eds.), Biology of the Red Algae. Cambridge University Press, Cambridge.Google Scholar
  39. Croft, M.T., Lawrence, A.D., Raux-Deery, E., Warren, M.J. and Smith, A.G. (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, 90–93.PubMedCrossRefGoogle Scholar
  40. Dacey, J.W.H., Howse, F.A., Michaels, A.F. and Wakeham, S.G. (1998) Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Research, 45, 2085–2104.CrossRefGoogle Scholar
  41. Danon, A. and Mayfield, S.P. (1991) Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. Embo J, 10, 3993–4001.PubMedGoogle Scholar
  42. Danon, A. and Mayfield, S.P. (1994a) ADP-dependent phosphorylation regulates RNA-binding in vitro: implications in light-modulated translation. Embo J, 13, 2227–2235.PubMedGoogle Scholar
  43. Danon, A. and Mayfield, S.P. (1994b) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science, 266, 1717–1719.PubMedCrossRefGoogle Scholar
  44. Dashwood, R.H. (1998) Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110, 1–5.PubMedCrossRefGoogle Scholar
  45. Davies, J.P., Weeks, D.P. and Grossman, A.R. (1992) Expression of the arylsulfatase gene from the ß2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res, 20, 2959–2965.PubMedCrossRefGoogle Scholar
  46. Davies, J.P., Yildiz, F. and Grossman, A.R. (1994) Mutants of chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell, 6, 53–63.PubMedCrossRefGoogle Scholar
  47. Davies, J.P., Yildiz, F.H. and Grossman, A. (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. Embo J, 15, 2150–2159.PubMedGoogle Scholar
  48. Davies, J.P., Yildiz, F.H. and Grossman, A.R. (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell, 11, 1179–1190.PubMedCrossRefGoogle Scholar
  49. de Hostos, E.L., Schilling, J. and Grossman, A.R. (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet, 218, 229–239.PubMedCrossRefGoogle Scholar
  50. de Hostos, E.L., Togasaki, R.K. and Grossman, A.R. (1988) Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J Cell Biol, 106, 29–37.PubMedCrossRefGoogle Scholar
  51. de Souza, M.P. and Yoch, D.C. (1995a) Comparative physiology of dimethyl sulfide production by dimethylsulfoniopropionate lyase in Pseudomonas doudoroffii and Alcaligenes sp. strain M3A. Appl Environ Microbiol, 61, 3986–3991.PubMedGoogle Scholar
  52. de Souza, M.P. and Yoch, D.C. (1995b) Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Appl Environ Microbiol, 61, 21–26.PubMedGoogle Scholar
  53. de Souza, M.P. and Yoch, D.C. (1996) Differential metabolism of dimethylsulphoniopropionate and acrylate in saline and brackish intertidal sediments. Microbial Ecol, 31, 319–330.CrossRefGoogle Scholar
  54. Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., Worden, A.Z., Robbens, S., Partensky, F., Degroeve, S., Echeynie, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C., Panaud, O., Piegu, B., Ball, S.G., Ral, J.P., Bouget, F.Y., Piganeau, G., De Baets, B., Picard, A., Delseny, M., Demaille, J., Van de Peer, Y. and Moreau, H. (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A, 103, 11647–11652.PubMedCrossRefGoogle Scholar
  55. Dickson, D.M.J. and Kirst, G.O. (1987) Osmotic adjustment in marine eukaryotic algae: The role of inorganic ions, quaternary ammonium, tertiary sulphonium and carbohydrate solutes. II. Prasinophytes and haptophytes. New Phytologist, 106, 657–666.CrossRefGoogle Scholar
  56. Domínguez, M.J., Gutierrez, F., Leon, R., Vilchez, C., Vega, J.M. and Vigara, J. (2003) Cadmium increases the activity levels of glutamate dehydrogenase and cysteine synthase in Chlamydomonas reinhardtii. Plant Physiol Biochem, 41, 828–832.CrossRefGoogle Scholar
  57. Eberhard, S., Jain, M., Im, C.S., Pollock, S., Shrager, J., Lin, Y., Peek, A.S. and Grossman, A.R. (2006) Generation of an oligonucleotide array for analysis of gene expression in Chlamydomonas reinhardtii. Curr Genet, 49, 106–124.PubMedCrossRefGoogle Scholar
  58. El-Naggar, A.H. and El-Sheekh, M.M. (1998) Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ Pollution, 101, 169–174.CrossRefGoogle Scholar
  59. Fabregas, J., Garca, D., Fernandez-Alonso, M., Rocha, A.I., Gomez-Puertas, P., Escribano, J.M., Otero, A. and Coll, J.M. (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Research, 44, 67–73.PubMedCrossRefGoogle Scholar
  60. Fahey, R.C., Buschbacher, R.M. and Newton, G.L. (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol, 25, 81–88.PubMedCrossRefGoogle Scholar
  61. Faller, P., Kienzler, K. and Krieger-Liszkay, A. (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta, 1706, 158–164.PubMedCrossRefGoogle Scholar
  62. Ferrari, D.M. and Soling, H.D. (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J, 339 (Pt 1), 1–10.PubMedCrossRefGoogle Scholar
  63. Florencio, F.J., Yee, B.C., Johnson, T.C. and Buchanan, B.B. (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys, 266, 496–507.PubMedCrossRefGoogle Scholar
  64. Fong, C.L., Lentz, A. and Mayfield, S.P. (2000) Disulfide bond formation between RNA binding domains is used to regulate mRNA binding activity of the chloroplast poly(A)-binding protein. J Biol Chem, 275, 8275–8278.PubMedCrossRefGoogle Scholar
  65. Fouchard, S., Hemschemeier, A., Caruana, A., Pruvost, J., Legrand, J., Happe, T., Peltier, G. and Cournac, L. (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived chlamydomonas cells. Appl Environ Microbiol, 71, 6199–6205.PubMedCrossRefGoogle Scholar
  66. Fu, L.H., Wang, X.F., Eyal, Y., She, Y.M., Donald, L.J., Standing, K.G. and Ben-Hayyim, G. (2002) A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem, 277, 25983–25991.PubMedCrossRefGoogle Scholar
  67. Gaber, A., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. (2001) NADPH-dependent glutathione peroxidase-like proteins (Gpx-1, Gpx-2) reduce unsaturated fatty acid hydroperoxides in Synechocystis PCC 6803. FEBS Lett, 499, 32–36.PubMedCrossRefGoogle Scholar
  68. Gaber, A., Yoshimura, K., Tamoi, M., Takeda, T., Nakano, Y. and Shigeoka, S. (2004) Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol, 136, 2855–2861.PubMedCrossRefGoogle Scholar
  69. Gaffron, H. and Rubin, J. (1942) Fermentation and photochemical production of hydrogen in algae. J Gen Physiol, 26, 219–241.CrossRefPubMedGoogle Scholar
  70. Gage, D.A., Rhodes, D., Nolte, K.D., Hicks, W.A., Leustek, T., Cooper, A.J. and Hanson, A.D. (1997) A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature, 387, 891–894.PubMedCrossRefGoogle Scholar
  71. Gao, Y., Schofield, O.M. and Leustek, T. (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol, 123, 1087–1096.PubMedCrossRefGoogle Scholar
  72. Gayler, K.R. and Sykes, G.E. (1985) Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol, 78, 582–585.PubMedCrossRefGoogle Scholar
  73. Geigenberger, P., Kolbe, A. and Tiessen, A. (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot, 56, 1469–1479.PubMedCrossRefGoogle Scholar
  74. Gekeler, W., Grill, E., Winnacker, E.-L. and Zenk, M.H. (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol, 150, 197–202.CrossRefGoogle Scholar
  75. Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E. and Melis, A. (2000) Microalgae: a green source of renewable H2. Trends Biotechnol, 18, 506–511.PubMedCrossRefGoogle Scholar
  76. Giordano, M., Pezzoni, V. and Hell, R. (2000) Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol, 124, 857–864.PubMedCrossRefGoogle Scholar
  77. Gladyshev, V.N. and Kryukov, G.V. (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors, 14, 87–92.PubMedCrossRefGoogle Scholar
  78. Gleason, F.K., Whittaker, M.M., Holmgren, A. and Jornvall, H. (1985) The primary structure of thioredoxin from the filamentous cyanobacterium Anabaena sp. 7119. J Biol Chem, 260, 9567–9573.PubMedGoogle Scholar
  79. Goodman, N.S. and Schiff, J.A. (1964) Studies of sulfate utilization by algae. 3. Products formed from sulfate by euglena. J Protozool, 11, 120–127.PubMedGoogle Scholar
  80. Gounaris, K., Whitford, D. and Barber, J. (1985) Isolation and characterization of a photosystem II reaction center lipoprotein complex. FEBS Lett, 188, 68–72.CrossRefGoogle Scholar
  81. Green, L.S. and Grossman, A.R. (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol, 170, 583–587.PubMedGoogle Scholar
  82. Green, L.S., Laudenbach, D.E. and Grossman, A.R. (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci U S A, 86, 1949–1953.PubMedCrossRefGoogle Scholar
  83. Grillo, J.F. and Gibson, J. (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol, 140, 508–517.PubMedGoogle Scholar
  84. Groene, T. (1995) Biogenic production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the marine epipelagic zone: a review. J Marine Systems, 6, 191–209.CrossRefGoogle Scholar
  85. Gromer, S., Johansson, L., Bauer, H., Arscott, L.D., Rauch, S., Ballou, D.P., Williams, C.H., Jr., Schirmer, R.H. and Arner, E.S. (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A, 100, 12618–12623.PubMedCrossRefGoogle Scholar
  86. Gröne, T. and Kirst, G.O (1992) The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein).. Mar Biol, 112, 497–503.CrossRefGoogle Scholar
  87. Grossman, A. and Takahashi, H. (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol, 52, 163–210.PubMedCrossRefGoogle Scholar
  88. Grossman, A.R. (2005) Paths toward algal genomics. Plant Physiol, 137, 410–427.PubMedCrossRefGoogle Scholar
  89. Grossman, A.R., Harris, E.E., Hauser, C., Lefebvre, P.A., Martinez, D., Rokhsar, D., Shrager, J., Silflow, C.D., Stern, D., Vallon, O. and Zhang, Z. (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell, 2, 1137–1150.PubMedCrossRefGoogle Scholar
  90. Guler, S., Seeliger, A., Hartel, H., Renger, G. and Benning, C. (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem, 271, 7501–7507.PubMedCrossRefGoogle Scholar
  91. Gutman, B.L. and Niyogi, K.K. (2004) Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol, 135, 607–610.PubMedCrossRefGoogle Scholar
  92. Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E. (2002) Calibration of sulfate levels in the archean ocean. Science, 298, 2372–2374.PubMedCrossRefGoogle Scholar
  93. Hamilton, B.S., Nakamura, K. and Roncari, D.A. (1992) Accumulation of starch in Chlamydomonas reinhardtii flagellar mutants. Biochem Cell Biol, 70, 255–258.PubMedCrossRefGoogle Scholar
  94. Harada, E., von Roepenack-Lahaye, E. and Clemens, S. (2004) A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry, 65, 3179–3185.PubMedCrossRefGoogle Scholar
  95. Harold, F.M. and Sylvan, S. (1963) Accumulation of inorganic polyphosphate in Aerobacter aerogenes II. Environmental control and the role of sulfur compounds. J Bacteriol, 86, 222–231.PubMedGoogle Scholar
  96. Harrison, A., Sakato, M., Tedford, H.W., Benashski, S.E., Patel-King, R.S. and King, S.M. (2002) Redox-based control of the gamma heavy chain ATPase from Chlamydomonas outer arm dynein. Cell Motil Cytoskeleton, 52, 131–143.PubMedCrossRefGoogle Scholar
  97. Harwood, J.L. and Nicholls, R.G. (1979) The plant sulpholipid–a major component of the sulphur cycle. Biochem Soc Trans, 7, 440–447.PubMedGoogle Scholar
  98. Hetland, G. (2003) Anti-infective action of immuno-modulating polysaccharides (-glucan and Plantago Major L. Pectin) against intracellular (Mycobacteria sp.) and extracellular (Streptococcus Pneumoniae sp.) respiratory pathogens. Current Med Chem–Anti-Infective Agents, 2, 135–146.CrossRefGoogle Scholar
  99. Hirata, K., Tsujimoto, Y., Namba, T., Ohta, T., Hirayanagi, N., Miyasaka, H., Zenk, M.H. and Miyamoto, K. (2001) Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J Biosci Bioeng, 92, 24–29.PubMedCrossRefGoogle Scholar
  100. Hodson, R.C. and Schiff, J.A. (1971a) Studies of sulfate utilization by algae: 8. The ubiquity of sulfate reduction to thiosulfate. Plant Physiol, 47, 296–299.PubMedCrossRefGoogle Scholar
  101. Hodson, R.C. and Schiff, J.A. (1971b) Studies of sulfate utilization by algae: 9. Fractionation of a cell-free system from Chlorella into two activities necessary for the reduction of adenosine 3′-phosphate 5′-phosphosulfate to acid-volatile radioactivity. Plant Physiol, 47, 300–305.PubMedCrossRefGoogle Scholar
  102. Hodson, R.C., Schiff, J.A. and Mather, J.P. (1971) Studies of sulfate utilization by algae: 10. Nutritional and enzymatic characterization of Chlorella mutants impaired for sulfate utilization. Plant Physiol, 47, 306–311.PubMedCrossRefGoogle Scholar
  103. Howe, G. and Merchant, S. (1992) Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol, 98, 127–136.PubMedCrossRefGoogle Scholar
  104. Hu, S., Lau, K.W.K. and Wu, M. (2001) Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci, 161, 987–996.CrossRefGoogle Scholar
  105. Huleihel, M., Ishanu, V., Tal, J. and Arad, S. (2002) Activity of Porphyridium sp. against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods, 50, 189–200.CrossRefGoogle Scholar
  106. Huppe, H.C., de Lamotte-Guery, F., Jacquot, J.P. and Buchanan, B.B. (1990) The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Planta, 180, 341–351.PubMedCrossRefGoogle Scholar
  107. Huppe, H.C., Picaud, A., Buchanan, B.B. and Miginiac-Maslow, M. (1991) Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii. Planta, 186, 115–121.PubMedCrossRefGoogle Scholar
  108. Irihimovitch, V. and Shapira, M. (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem, 275, 16289–16295.PubMedCrossRefGoogle Scholar
  109. Irihimovitch, V. and Stern, D.B. (2006) The sulfur acclimation SAC3 kinase is required for chloroplast transcriptional repression under sulfur limitation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 103, 7911–7916.PubMedCrossRefGoogle Scholar
  110. Ito, H., Iwabuchi, M. and Ogawa, K. (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol, 44, 655–660.PubMedCrossRefGoogle Scholar
  111. James, F., Paquet, L., Sparace, S.A., Gage, D.A. and Hanson, A.D. (1995) Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. Plant Physiol, 108, 1439–1448.PubMedCrossRefGoogle Scholar
  112. Jeanjean, R. and Broda, E. (1977) Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate stravation. Arch Microbiol, 114, 19–23.PubMedCrossRefGoogle Scholar
  113. Jensen, T.E. and Rachlin, J.W. (1984) Effect of varying sulphur deficiency on structural components of a cyanobacterium Synechococcus leopoliiensis: a morphometric study. Cytobios, 41, 35–46.Google Scholar
  114. Jez, J.M., Cahoon, R.E. and Chen, S. (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem, 279, 33463–33470.PubMedCrossRefGoogle Scholar
  115. Jo, J.H., Lee, D.S. and Park, J.M. (2006) Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol Prog, 22, 431–437.PubMedCrossRefGoogle Scholar
  116. Jordan, P.A. and Gibbins, J.M. (2006) Extracellular disulfide exchange and the regulation of cellular function. Antioxid Redox Signal, 8, 312–324.PubMedCrossRefGoogle Scholar
  117. Kanno, N., Nagahisa, E., Sato, M. and Sato, Y. (1996) Adenosine 5-prime-phosphosulfate sulfotransferase from the marine macroalga Porphyra yezoensis Ueda (Rhodophyta): stabilization, purification, and properties. Planta, 198, 440–446.CrossRefGoogle Scholar
  118. Kaplan, D., Heimer, Y.M., Abeliovich, A. and Goldbrough, P.B. (1995) Cadmium toxicity and resistance in Chlorella sp. Plant Sci, 109, 129–137.CrossRefGoogle Scholar
  119. Karsten, U., Wiencke, C. and G.O., K. (1992) Dimethylsulphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Pol Biol, 12, 603–607.CrossRefGoogle Scholar
  120. Karsten, U., Wiencke, C. and Kirst, G.O. (1990) The effect of light intensity and daylength on the β-dimethylsulphoniopropionate (DMSP) content of marine green macroalgae from Antarctica. Plant Cell Environ, 12, 989–993.CrossRefGoogle Scholar
  121. Kathir, P., LaVoie, M., Brazelton, W.J., Haas, N.A., Lefebvre, P.A. and Silflow, C.D. (2003) Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot Cell, 2, 362–379.PubMedCrossRefGoogle Scholar
  122. Kawaguchi, H., Hashimoto, K., Hirata, K. and Miyamoto, K. (2001) H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng, 91, 277–282.PubMedCrossRefGoogle Scholar
  123. Keller, M.D., Kiene, R.P., Matrai, P.A. and Bellows, W.K. (1999) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol, 135, 249–257.CrossRefGoogle Scholar
  124. Kieber, D.J., Jiao, J., Kiene, R.P. and Bates, T.S. (1996) Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific ocean. J Geophys Res, 101, 3715–3722.CrossRefGoogle Scholar
  125. Kim, J. and Mayfield, S.P. (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science, 278, 1954–1957.PubMedCrossRefGoogle Scholar
  126. Kim, J. and Mayfield, S.P. (2002) The active site of the thioredoxin-like domain of chloroplast protein disulfide isomerase, RB60, catalyzes the redox-regulated binding of chloroplast poly(A)-binding protein, RB47, to the 5′ untranslated region of psbA mRNA. Plant Cell Physiol, 43, 1238–1243.PubMedCrossRefGoogle Scholar
  127. Kirst, G., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M. and Ulmke, R. (1991) Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Mar Chem, 35, 381–388.CrossRefGoogle Scholar
  128. Klein, U. (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol, 85, 892–897.PubMedCrossRefGoogle Scholar
  129. Kloareg, B. and Quatrano, R.S. (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Res, 26, 259–315.Google Scholar
  130. Kobayashi, I., Fujiwara, S., Saegusa, H., Inouhe, M., Matsumoto, H. and Tsuzuki, M. (2006) Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii. Mar Biotechnol (NY), 8, 94–101.CrossRefGoogle Scholar
  131. Kocsis, M.G., Nolte, K.D., Rhodes, D., Shen, T.L., Gage, D.A. and Hanson, A.D. (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora1. Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol, 117, 273–281.PubMedCrossRefGoogle Scholar
  132. Kopriva, S., Buchert, T., Fritz, G., Suter, M., Benda, R., Schunemann, V., Koprivova, A., Schurmann, P., Trautwein, A.X., Kroneck, P.M. and Brunold, C. (2002) The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem, 277, 21786–21791.PubMedCrossRefGoogle Scholar
  133. Kopriva, S., Buchert, T., Fritz, G., Suter, M., Weber, M., Benda, R., Schaller, J., Feller, U., Schurmann, P., Schunemann, V., Trautwein, A.X., Kroneck, P.M. and Brunold, C. (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem, 276, 42881–42886.PubMedCrossRefGoogle Scholar
  134. Kopriva, S. and Koprivova, A. (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot, 55, 1775–1783.PubMedCrossRefGoogle Scholar
  135. Kruse, O., Hankamer, B., Konczak, C., Gerle, C., Morris, E., Radunz, A., Schmid, G.H. and Barber, J. (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem, 275, 6509–6514.PubMedCrossRefGoogle Scholar
  136. Kugita, M., Kaneko, A., Yamamoto, Y., Takeya, Y., Matsumoto, T. and Yoshinaga, K. (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res, 31, 716–721.PubMedCrossRefGoogle Scholar
  137. Kurvari, V., Qian, F. and Snell, W.J. (1995) Increased transcript levels of a methionine synthase during adhesion-induced activation of Chlamydomonas reinhardtii gametes. Plant Mol Biol, 29, 1235–1252.PubMedCrossRefGoogle Scholar
  138. Lauchli, A. (1993) Selenium in plants: Uptake, functions, and environmental toxicity. Bot Acta, 106, 455–468.Google Scholar
  139. Laudenbach, D.E. and Grossman, A.R. (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol, 173, 2739–2750.PubMedGoogle Scholar
  140. Lawry, N.H. and Jensen, T.E. (1979) Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacterium Synechococcus sp. (Anacystis nidulans). Arch Microbiol, 120, 1–7.CrossRefGoogle Scholar
  141. Lawry, N.H. and Simon, R.D. (1982) The normal and induced occurrence of cyanophycin inclusion bodies in several blue-green algae. J Phycol, 18, 391–399.CrossRefGoogle Scholar
  142. Le Faucheur, S., Behra, R. and Sigg, L. (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem, 24, 1731–1737.PubMedCrossRefGoogle Scholar
  143. Ledford, H.K., Baroli, I., Shin, J.W., Fischer, B.B., Eggen, R.I. and Niyogi, K.K. (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll- deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics, 272, 470–479.PubMedCrossRefGoogle Scholar
  144. LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.Y., Tagmount, A., deSouza, M., Neuhierl, B., Bock, A., Caruso, J. and Terry, N. (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol, 135, 377–383.PubMedCrossRefGoogle Scholar
  145. Lee, S. and Leustek, T. (1998) APS kinase from Arabidopsis thaliana: genomic organization, expression, and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun, 247, 171–175.PubMedCrossRefGoogle Scholar
  146. Lefebvre, P.A. and Silflow, C.D. (1999) Chlamydomonas: the cell and its genomes. Genetics, 151, 9–14.PubMedGoogle Scholar
  147. Leisinger, U., Rufenacht, K., Fischer, B., Pesaro, M., Spengler, A., Zehnder, A.J. and Eggen, R.I. (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol, 46, 395–408.PubMedCrossRefGoogle Scholar
  148. Lemaire, S., Keryer, E., Stein, M., Schepens, I.I., Issakidis-Bourguet, E., Gerard Hirni, C., Miginiac-Maslow, M. and Jacquot, J.P. (1999a) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol, 120, 773–778.PubMedCrossRefGoogle Scholar
  149. Lemaire, S.D. (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res, 79, 305–318.PubMedCrossRefGoogle Scholar
  150. Lemaire, S.D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M. and Decottignies, P. (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 101, 7475–7480.PubMedCrossRefGoogle Scholar
  151. Lemaire, S.D. and Miginiac-Maslow, M. (2004) The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res, 82, 203–220.PubMedCrossRefGoogle Scholar
  152. Lemaire, S.D., Quesada, A., Merchan, F., Corral, J.M., Igeno, M.I., Keryer, E., Issakidis-Bourguet, E., Hirasawa, M., Knaff, D.B. and Miginiac-Maslow, M. (2005) NADP-malate dehydrogenase from unicellular green alga Chlamydomonas reinhardtii. A first step toward redox regulation? Plant Physiol, 137, 514–521.PubMedCrossRefGoogle Scholar
  153. Lemaire, S.D., Stein, M., Issakidis-Bourguet, E., Keryer, E., Benoit, V.V., Pineau, B., Gerard-Hirne, C., Miginiac-Maslow, M. and Jacquot, J.P. (1999b) The complex regulation of ferredoxin/thioredoxin-related genes by light and the circadian clock. Planta, 209, 221–229.PubMedCrossRefGoogle Scholar
  154. Lemieux, C., Otis, C. and Turmel, M. (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature, 403, 649–652.PubMedCrossRefGoogle Scholar
  155. Levitan, A., Trebitsh, T., Kiss, V., Pereg, Y., Dangoor, I. and Danon, A. (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci U S A, 102, 6225–6230.PubMedCrossRefGoogle Scholar
  156. Li, J.J., Saidha, T. and Schiff, J.A. (1991) Purification and properties of two forms of ATP sulfurylase from Euglena. Biochim Biophys Acta, 1078, 68–76.PubMedGoogle Scholar
  157. Li, J.Y. and Schiff, J.A. (1991) Purification and properties of adenosine 5′-phosphosulphate sulphotransferase from Euglena. Biochem J, 274 (Pt 2), 355–360.PubMedGoogle Scholar
  158. Libessart, N., Maddelein, M.L., Koornhuyse, N., Decq, A., Delrue, B., Mouille, G., D’Hulst, C. and Ball, S. (1995) Storage, photosynthesis, and growth: The conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas. Plant Cell, 7, 1117–1127.PubMedCrossRefGoogle Scholar
  159. Lien, T. and Schreiner, Ø. (1975) Purification of a derepressible arylsulfatase from Chlamydomonas reinhardtii. Properties of the enzyme in intact cells and in purified state. Biochim Biophys Acta, 384, 168–179.PubMedGoogle Scholar
  160. Lindahl, M. and Florencio, F.J. (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci U S A, 100, 16107–16112.PubMedCrossRefGoogle Scholar
  161. Loewus, F., Wagner, G., Schiff, J.A. and Weistrop, J. (1971) The incorporation of 35S-labeled sulfate into carrageenan in Chondrus crispus. Plant Physiol, 48, 373–375.PubMedCrossRefGoogle Scholar
  162. Loll, B., Kern, J., Saenger, W., Zouni, A. and Biesiadka, J. (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature, 438, 1040–1044.PubMedCrossRefGoogle Scholar
  163. Lomans, B.P., van der Drift, C., Pol, A. and Op den Camp, H.J. (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci, 59, 575–588.PubMedCrossRefGoogle Scholar
  164. Lovelock, J.E. (1972) Gaia as seen through the atmosphere. Atmos Environ, 6, 579–580.CrossRefGoogle Scholar
  165. Lyi, S.M., Heller, L.I., Rutzke, M., Welch, R.M., Kochian, L.V. and Li, L. (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol, 138, 409–420.PubMedCrossRefGoogle Scholar
  166. Malea, P., Rijstenbil, J.W. and Haritonidis, S. (2006) Effects of cadmium, zinc and nitrogen status on nonprotein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (Greece, N Aegean Sea). Marine Environ Res, 62, 45–60.CrossRefGoogle Scholar
  167. Malin, G. and Kirst, G.O. (1997) Algal production of dimethyl sulfide and its atmospheric role. J Phycol, 33, 889–896.CrossRefGoogle Scholar
  168. Marrs, K.A. (1996) The functions and regulation of glutathione S-transferase in plants. Annu Rev Plant Physiol Plant Mol Biol, 47, 127–158.PubMedCrossRefGoogle Scholar
  169. Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T. and Takahashi, H. (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol, 132, 597–605.PubMedCrossRefGoogle Scholar
  170. Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T. and Takahashi, H. (2004) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot, 55, 1843–1849.PubMedCrossRefGoogle Scholar
  171. Matagne, R.F., Loppes, R. and Deltour, R. (1976) Phosphatase of Chlamydomonas reinhardi: biochemical and cytochemical approach with specific mutants. J Bacteriol, 126, 937–950.PubMedGoogle Scholar
  172. Matrai, P.A. and Keller, M.D. (1994) Total organic sulfur and dimethylsulfoniopropionate (DMSP) in marine phytoplankton: Intracellular variation. Mar Biol, 119, 61–68.CrossRefGoogle Scholar
  173. Matsuzaki, M., Misumi, O., Shin, I.T., Maruyama, S., Takahara, M., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. and Kuroiwa, T. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 428, 653–657.PubMedCrossRefGoogle Scholar
  174. Melis, A. and Chen, H.C. (2005) Chloroplast sulfate transport in green algae – genes, proteins and effects. Photosynth Res, 86, 299–307.PubMedCrossRefGoogle Scholar
  175. Melis, A. and Happe, T. (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol, 127, 740–748.PubMedCrossRefGoogle Scholar
  176. Melis, A. and Happe, T. (2004) Trails of green alga hydrogen research – from hans gaffron to new frontiers. Photosynth Res, 80, 401–409.PubMedCrossRefGoogle Scholar
  177. Melis, A., Seibert, M. and Happe, T. (2004) Genomics of green algal hydrogen research. Photosynth Res, 82, 277–288.PubMedCrossRefGoogle Scholar
  178. Meyer, A.J. and Hell, R. (2005) Glutathione homeostasis and redox regulation of sulfhydryl groups. Photosyn Res, 86, 435–457.PubMedCrossRefGoogle Scholar
  179. Michelet, L., Zaffagnini, M., Marchand, C., Collin, V., Decottignies, P., Tsan, P., Lancelin, J.M., Trost, P., Miginiac-Maslow, M., Noctor, G. and Lemaire, S.D. (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci U S A, 102, 16478–16483.PubMedCrossRefGoogle Scholar
  180. Morelli, E., Cruz, B.H., Somovigo, S. and Scarano, G. (2002) Speciation of cadmium-glutamyl peptides complexes in cells of the marine microagla Phaeodactylum tricornutum. Plant Sci, 163, 807–813.CrossRefGoogle Scholar
  181. Morelli, E. and Scarano, G. (2001) Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Marine Environ Res, 52, 383–395.CrossRefGoogle Scholar
  182. Moseley, J.L., Chang, C.W. and Grossman, A.R. (2006) Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii. Eukaryot Cell, 5, 26–44.PubMedCrossRefGoogle Scholar
  183. Munavalli, S., Parker, D.V. and Hamilton, F.D. (1975) Identification of NADPH-thioredoxin reductase system in Euglena gracillis. Proc Natl Acad Sci U S A, 72, 4233–4237.PubMedCrossRefGoogle Scholar
  184. Murata, N., Higashi, S.I. and Fujimura, Y. (1990) Glycerolipids in. various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta, 1019, 261–268.CrossRefGoogle Scholar
  185. Murata, N. and Sato, N. (1983) Analysis of lipids in Prochloron. sp.: occurrence of monoglucosyl diacylglycerol. Plant Cell Physiol, 24, 133–138.Google Scholar
  186. Nagel, K., Adelmeier, U. and Voigt, J. (1996) Subcellular distribution of. cadmium in the unicellular green alga Chlamydomonas reinhardtii. J Plant Physiol, 149, 86–90.Google Scholar
  187. Nagel, K. and Voigt, J. (1995) Impaired photosynthesis in a cadmium-tolerant Chlamydomonas mutant strain. Microbiol Res, 150, 105–110.Google Scholar
  188. Navarro, F. and Florencio, F.J. (1996) The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol, 111, 1067–1075.PubMedCrossRefGoogle Scholar
  189. Nicholson, M.L., Gaasenbeek, M. and Laudenbach, D.E. (1995) Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid. Mol Gen Genet, 247, 623–632.PubMedCrossRefGoogle Scholar
  190. Nicholson, M.L. and Laudenbach, D.E. (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR. J Bacteriol, 177, 2143–2150.PubMedGoogle Scholar
  191. Nishiguchi, M.K. and Somero, G.N. (1992) Temperature- and concentration-dependence of compatibility of the organic osmolyte beta-dimethylsulfoniopropionate. Cryobiology, 29, 118–124.PubMedCrossRefGoogle Scholar
  192. Nishikawa, K., Onodera, A. and Tominaga, N. (2006) Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere, 63, 1553–1559.PubMedCrossRefGoogle Scholar
  193. Noctor, G. and Foyer, C.H. (1998) Ascorbate and Glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 49, 249–279.PubMedCrossRefGoogle Scholar
  194. Novoselov, S.V., Rao, M., Onoshko, N.V., Zhi, H., Kryukov, G.V., Xiang, Y., Weeks, D.P., Hatfield, D.L. and Gladyshev, V.N. (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. Embo J, 21, 3681–3693.PubMedCrossRefGoogle Scholar
  195. Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, S.Y., Nozaki, H., Tanaka, K., Shin, I.T., Kohara, Y. and Kuroiwa, T. (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res, 10, 67–77.PubMedCrossRefGoogle Scholar
  196. Ohyama, K., Fukuzawa, H., Kohchi, T., Sano, T., Sano, S., Shirai, H., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z. and et al. (1988) Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol, 203, 281–298.PubMedCrossRefGoogle Scholar
  197. Omata, T. and Murata, N. (1983) Isolation and characterization of the cytoplasmic membranes from the blue-green. alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol, 24, 1101–1112.Google Scholar
  198. Perez-Rama, M., Torres Vaamonde, E. and Abalde Alonso, J. (2006) Composition and production of thiol constituents induced by cadmium in the marine microalga Tetraselmis suecica. Environ Toxicol Chem, 25, 128–136.PubMedCrossRefGoogle Scholar
  199. Plumley, F.G. and Schmidt, G.W. (1989) Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A, 86, 2678–2682.PubMedCrossRefGoogle Scholar
  200. Pollock, S.V., Pootakham, W., Shibagaki, N., Moseley, J.L. and Grossman, A.R. (2005) Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation. Photosynth Res, 86, 475–489.PubMedCrossRefGoogle Scholar
  201. Posewitz, M.C., King, P.W., Smolinski, S.L., Zhang, L., Seibert, M. and Ghirardi, M.L. (2004a) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem, 279, 25711–25720.PubMedCrossRefGoogle Scholar
  202. Posewitz, M.C., Smolinski, S.L., Kanakagiri, S., Melis, A., Seibert, M. and Ghirardi, M.L. (2004b) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell, 16, 2151–2163.PubMedCrossRefGoogle Scholar
  203. Quisel, J.D., Wykoff, D.D. and Grossman, A.R. (1996) Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii. Plant Physiol, 111, 839–848.PubMedCrossRefGoogle Scholar
  204. Ramus, J. (1974) In vivo molybdate inhibition of sulfate transfer to porphyridium capsular polysaccharide. Plant Physiol, 54, 945–949.PubMedCrossRefGoogle Scholar
  205. Ramus, J. and Groves, S.T. (1972) Incorporation of sulfate into the capsular polysaccharide of the red alga Porphyridium. J Cell Biol, 54, 399–407.PubMedCrossRefGoogle Scholar
  206. Ravina, C.G., Barroso, C., Vega, J.M. and Gotor, C. (1999) Cysteine biosynthesis in Chlamydomonas reinhardtii. Molecular cloning and regulation of O-acetylserine (thiol) lyase. Eur J Biochem, 264, 848–853.PubMedCrossRefGoogle Scholar
  207. Ravina, C.G., Chang, C.I., Tsakraklides, G.P., McDermott, J.P., Vega, J.M., Leustek, T., Gotor, C. and Davies, J.P. (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol, 130, 2076–2084.PubMedCrossRefGoogle Scholar
  208. Rea, P.A., Vatamaniuk, O.K. and Rigden, D.J. (2004) Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase. Plant Physiol, 136, 2463–2474.PubMedCrossRefGoogle Scholar
  209. Reed, R. (1983) Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine microalgae. Mar Biol Lett, 34, 173–181.Google Scholar
  210. Riekhof, W.R., Ruckle, M.E., Lydic, T.A., Sears, B.B. and Benning, C. (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldiacylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol, 133, 864–874.PubMedCrossRefGoogle Scholar
  211. Rijstenbil, J.W., Sandee, A., Van Drie, J. and Wijnholds, J.A. (1994) Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana. FEMS Microbiol Rev, 14, 387–396.PubMedCrossRefGoogle Scholar
  212. Romanyuk, N.D., Rigden, D.J., Vatamaniuk, O.K., Lang, A., Cahoon, R.E., Jez, J.M. and Rea, P.A. (2006) Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiol, 141, 858–869.PubMedCrossRefGoogle Scholar
  213. Ruiz, F.A., Marchesini, N., Seufferheld, M., Govindjee and Docampo, R. (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem, 276, 46196–46203.PubMedCrossRefGoogle Scholar
  214. Ryan, J., McKillen, M. and Mason, J. (1987) Sulphate/molybdate interactions: in vivo and in vitro studies on the group VI oxyanion transport system in ovine renal tubule epithelial cells. Ann Rech Vet, 18, 47–55.PubMedGoogle Scholar
  215. Saito, K. (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol, 3, 188–195.PubMedGoogle Scholar
  216. Sato, N. (2004) Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res, 117, 495–505.PubMedCrossRefGoogle Scholar
  217. Sato, N., Sonoike, K., Tsuzuki, M. and Kawaguchi, A. (1995) Impaired photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem, 234, 16–23.PubMedCrossRefGoogle Scholar
  218. Sato, N., Sugimoto, K., Meguro, A. and Tsuzuki, M. (2003) Identification of a gene for UDP-sulfoquinovose synthase of a green alga, Chlamydomonas reinhardtii, and its phylogeny. DNA Res, 10, 229–237.PubMedCrossRefGoogle Scholar
  219. Schiff, J.A. (1959) Studies on sulfate utilization by Chlorella pyrenoidosa using sulfate-S; the occurrence of S-adenosyl methionine. Plant Physiol, 34, 73–80.PubMedCrossRefGoogle Scholar
  220. Schiff, J.A. (1979) Pathways of assimilatory sulphate reduction in plants and microorganisms. Ciba Found Symp, 49–69.Google Scholar
  221. Schmidt, A. (1972) An APS-sulfotransferase from Chlorella. Arch Mikrobiol, 84, 77–86.PubMedCrossRefGoogle Scholar
  222. Schmidt, A. (1973) Sulfate reduction in a cell-free system of Chlorella. The ferredoxin-dependent reduction of a protein-bound intermediate by a thiosulfonate reductase. Arch Microbiol, 93, 29–52.Google Scholar
  223. Schmidt, A. and Trüper, H. (1977) Reduction of adenylylsulfate and 3′-phosphoadenylylsulfate in phototrophic bacteria. Experientia, 33, 1008–1009.PubMedCrossRefGoogle Scholar
  224. Schoeler, B., Delorme, N., Doench, I., Sukhorukov, G.B., Fery, A. and Glinel, K. (2006) Polyelectrolyte films based on polysaccharides of different conformations: effects on multilayer structure and mechanical properties. Biomacromolecules, 7, 2065–2071.PubMedCrossRefGoogle Scholar
  225. Schreiner, Ø., Lien, T. and Knutsen, G. (1975) The capacity for arylsulfatase synthesis in synchronous and synchronized cultures of Chlamydomonas reinhardtii. Biochim Biophys Acta, 384, 180–193.PubMedGoogle Scholar
  226. Schultze, M., Quiclet-Sire, B., Kondorosi, E., Virelizer, H., Glushka, J.N., Endre, G., Gero, S.D. and Kondorosi, A. (1992) Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci U S A, 89, 192–196.PubMedCrossRefGoogle Scholar
  227. Selstam, E. and Campbell, D. (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl. Arch Microbiol, 166, 132–135.CrossRefGoogle Scholar
  228. Shapira, M., Lers, A., Heifetz, P.B., Irihimovitz, V., Osmond, C.B., Gillham, N.W. and Boynton, J.E. (1997) Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein. Plant Mol Biol, 33, 1001–1011.PubMedCrossRefGoogle Scholar
  229. Shrager, J., Hauser, C., Chang, C.W., Harris, E.H., Davies, J., McDermott, J., Tamse, R., Zhang, Z. and Grossman, A.R. (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol, 131, 401–408.PubMedCrossRefGoogle Scholar
  230. Sieburth, J.M. (1960) Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in antarctic waters. Science, 132, 676–677.PubMedCrossRefGoogle Scholar
  231. Sigrist, M., Zwilliengerg, C., Giroud, C.H., Eichenberger, W. and Boschetti, A. (1988) Sulfolipid associated with the light-harvesting complex associated with photosystem II apoproteins of Chlamydomonas reinhardtii. Plant Sci, 58, 15–23.CrossRefGoogle Scholar
  232. Simo, R. and Pedros-Alio, C. (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature, 402, 396–399.CrossRefGoogle Scholar
  233. Siripornadulsil, S., Traina, S., Verma, D.P. and Sayre, R.T. (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837–2847.PubMedCrossRefGoogle Scholar
  234. Smith, I.W., Wilkinson, J.F. and Duguid, J.P. (1954) Volutin production in Aerobacter aerogenes due to nutrient imbalance. J Bacteriol, 68, 450–463.PubMedGoogle Scholar
  235. Stauber, E.J. and Hippler, M. (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Biochem, 42, 989–1001.PubMedCrossRefGoogle Scholar
  236. Stefels, J. (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res, 43, 183–197.CrossRefGoogle Scholar
  237. Stefels, J. and van Boekel, W.H.M. (1993) Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar Ecol Prog Ser, 97, 11–18.CrossRefGoogle Scholar
  238. Sugimoto, K., Sato, N., Watanabe, A. and Tsuzuki, M. (2005) Effects of sulfur deprivation on sulfolipid metabolism in Chlamydomonas reinhardtii. In Saito, K., De Kok, L.J., Stulen, I., Hawksford, M.J., Schnug, E. and Rennenberg, H. (eds.), Sulfur Transport and Assimilation in Plants in the Postgenomic Era. Backhuys Publishers, Leiden.Google Scholar
  239. Summers, P.S., Nolte, K.D., Cooper, A.J.L., Borgeas, H., Leustek, T., Rhodes, D. and Hanson, A.D. (1998) Identification and stereospecificity of the first three enzymes of 3-dimethylsulfoniopropionate biosynthesis in a chlorophyte alga. Plant Physiol, 116, 369–378.CrossRefGoogle Scholar
  240. Sunda, W., Kieber, D.J., Kiene, R.P. and Huntsman, S. (2002) An antioxidant function for DMSP and DMS in marine algae. Nature, 418, 317–320.PubMedCrossRefGoogle Scholar
  241. Tabe, L. and Higgins, T.J.V. (1998) Engineering plant protein composition for improved nutrition. Trends in Plant Science, 3, 282–286.CrossRefGoogle Scholar
  242. Takahashi, H., Braby, C.E. and Grossman, A.R. (2001) Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. Plant Physiol, 127, 665–673.PubMedCrossRefGoogle Scholar
  243. Takahashi, H., Noji, M., Hirai, M.Y. and Saito, K. (2003) [Molecular regulation of assimilatory sulfur metabolism in plants]. Tanpakushitsu Kakusan Koso, 48, 2121–2129.PubMedGoogle Scholar
  244. Takeda, T., Miyao, K., Tamoi, M., Kanaboshi, H., Miyasaka, H. and Shigeoka, S. (2003) Molecular characterization of glutathione peroxidase-like protein in halotolerant Chlamydomonas sp. W80. Physiol Plant, 117, 467–475.PubMedCrossRefGoogle Scholar
  245. Torricelli, E., Gorbi, G., Pawlik-Skowronska, B., Sanità di Toppi, L. and Grazia Corradi, M. (2004) Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquatic Toxicol, 68, 315–323.CrossRefGoogle Scholar
  246. Trebitsh, T., Levitan, A., Sofer, A. and Danon, A. (2000) Translation of chloroplast psbA mRNA is modulated in the light by counteracting oxidizing and reducing activities. Mol Cell Biol, 20, 1116–1123.PubMedCrossRefGoogle Scholar
  247. Trebitsh, T., Meiri, E., Ostersetzer, O., Adam, Z. and Danon, A. (2001) The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts. J Biol Chem, 276, 4564–4569.PubMedCrossRefGoogle Scholar
  248. Trémoliéres, A., Dainese, P. and Bassi, R. (1994) Heterogeneous lipid distribution among chloroplast-binding proteins of photosystem II in maize mesophyll chloroplasts. Eur J Biochem, 221, 721–730.PubMedCrossRefGoogle Scholar
  249. Trossat, C., Rathinasabapathi, B., Weretilnyk, E.A., Shen, T.L., Huang, Z.H., Gage, D.A. and Hanson, A.D. (1998) Salinity promotes accumulation of 3-dimethylsulfoniopropionate and its precursor S-methylmethionine in chloroplasts. Plant Physiol, 116, 165–171.PubMedCrossRefGoogle Scholar
  250. Tsang, M.L. (1981) Thioredoxin/glutaredoxin system of Chlorella: Chlorella adenosine 5′-phosphosulfate sulfotransferase cannot use thioredoxin or glutaredoxin as cofactors. Plant Physiol, 68, 1098–1104.PubMedCrossRefGoogle Scholar
  251. Tsuji, N., Hirayanagi, N., Iwabe, O., Namba, T., Tagawa, M., Miyamoto, S., Miyasaka, H., Takagi, M., Hirata, K. and Miyamoto, K. (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry, 62, 453–459.PubMedCrossRefGoogle Scholar
  252. Tsuji, N., Nishikori, S., Iwabe, O., Matsumoto, S., Shiraki, K., Miyasaka, H., Takagi, M., Miyamoto, K. and Hirata, K. (2005) Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay. Planta, 222, 181–191.PubMedCrossRefGoogle Scholar
  253. Tsuji, N., Nishikori, S., Iwabe, O., Shiraki, K., Miyasaka, H., Takagi, M., Hirata, K. and Miyamoto, K. (2004) Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120. Biochem Biophys Res Commun, 315, 751–755.PubMedCrossRefGoogle Scholar
  254. Turmel, M., Otis, C. and Lemieux, C. (1999) The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci U S A, 96, 10248–10253.PubMedCrossRefGoogle Scholar
  255. Turmel, M., Otis, C. and Lemieux, C. (2005) The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol, 3, 22.PubMedCrossRefGoogle Scholar
  256. Utkilen, H.C. (1976) Thiosulphate as electron donor in the blue-green alga Anacystis nidulans. J Gen Microbiol, 95, 177–180.PubMedGoogle Scholar
  257. van Waasbergen, L.G., Dolganov, N. and Grossman, A.R. (2002) nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol, 184, 2481–2490.PubMedCrossRefGoogle Scholar
  258. Visviki, I. and Rachlin, J.W. (1994) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: effects of ultrastructure. Arch Environ Contam Toxicol, 26, 154–162.PubMedGoogle Scholar
  259. Vivares, D., Arnoux, P. and Pignol, D. (2005) A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A, 102, 18848–18853.PubMedCrossRefGoogle Scholar
  260. Vlamis-Gardikas, A. and Holmgren, A. (2002) Thioredoxin and glutaredoxin isoforms. Methods Enzymol, 347, 286–296.PubMedCrossRefGoogle Scholar
  261. Wagner, V., Gessner, G., Heiland, I., Kaminski, M., Hawat, S., Scheffler, K. and Mittag, M. (2006) Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Eukaryot Cell, 5, 457–468.PubMedCrossRefGoogle Scholar
  262. Wagner, W. and Follmann, H. (1977) A thioredoxin from green algae. Biochem Biophys Res Commun, 77, 1044–1051.CrossRefGoogle Scholar
  263. Wakasugi, T., Nagai, T., Kapoor, M., Sugita, M., Ito, M., Ito, S., Tsudzuki, J., Nakashima, K., Tsudzuki, T., Suzuki, Y., Hamada, A., Ohta, T., Inamura, A., Yoshinaga, K. and Sugiura, M. (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci U S A, 94, 5967–5972.PubMedCrossRefGoogle Scholar
  264. Watanabe, M. and Suzuki, T. (2004) Cadmium induced synthesis of HSP70 and a role of glutathione in Euglena gracilis. Redox Report, 9, 349–353.PubMedCrossRefGoogle Scholar
  265. Weber, M., Suter, M., Brunold, C. and Kopriva, S. (2000) Sulfate assimilation in higher plants: characterization of a stable intermediate in the adenosine 5′-phosphosulfate reductase reaction. European Journal of Biochemistry, 267, 3647–3653.PubMedCrossRefGoogle Scholar
  266. Whittaker, M.M. and Gleason, F.K. (1984) Isolation and characterization of thioredoxin f from the filamentous cyanobacterium, Anabaena sp. 7119. J Biol Chem, 259, 14088–14093.PubMedGoogle Scholar
  267. Wilkinson, B. and Gilbert, H.F. (2004) Protein disulfide isomerase. Biochim Biophys Acta, 1699, 35–44.PubMedGoogle Scholar
  268. Wolfe, G.V., Steinke, M. and Kirst, G.O. (1997) Grazing-activated chemical defence in a unicellular marine alga. Nature, 387, 894–897.CrossRefGoogle Scholar
  269. Wykoff, D.D., Davies, J.P., Melis, A. and Grossman, A.R. (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol, 117, 129–139.PubMedCrossRefGoogle Scholar
  270. Wykoff, D.D., Grossman, A.R., Weeks, D.P., Usuda, H. and Shimogawara, K. (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci U S A, 96, 15336–15341.PubMedCrossRefGoogle Scholar
  271. Yamanaka, G., Glazer, A.N. and Williams, R.C. (1980) Molecular architecture of a light-harvesting antenna. Comparison of wild type and mutant Synechococcus 6301 phycobilisomes. J Biol Chem, 255, 11104–11110.PubMedGoogle Scholar
  272. Yildiz, F.H., Davies, J.P. and Grossman, A. (1996) Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol, 112, 669–675.PubMedCrossRefGoogle Scholar
  273. Yildiz, F.H., Davies, J.P. and Grossman, A.R. (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-Limited and sulfur-sufficient growth. Plant Physiol, 104, 981–987.PubMedGoogle Scholar
  274. Yoch, D.C., Ansede, J.H. and Rabinowitz, K.S. (1997) Evidence for intracellular and extracellular dimethylsulfoniopropionate (DMSP) lyases and DMSP uptake sites in two species of marine bacteria. Appl Environ Microbiol, 63, 3182–3188.PubMedGoogle Scholar
  275. Yokota, A., Shigeoka, S., Onishi, T. and Kitaoka, S. (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol, 86, 649–651.PubMedCrossRefGoogle Scholar
  276. Yosef, I., Irihimovitch, V., Knopf, J.A., Cohen, I., Orr-Dahan, I., Nahum, E., Keasar, C. and Shapira, M. (2004) RNA binding activity of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii. J Biol Chem, 279, 10148–10156.PubMedCrossRefGoogle Scholar
  277. Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H. and Shigeoka, S. (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J, 37, 21–33.PubMedCrossRefGoogle Scholar
  278. Zhang, L., Happe, T. and Melis, A. (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 214, 552–561.PubMedCrossRefGoogle Scholar
  279. Zhang, L. and Melis, A. (2002) Probing green algal hydrogen production. Philos Trans R Soc Lond B Biol Sci, 357, 1499–1507; discussion 1507–1411.PubMedCrossRefGoogle Scholar
  280. Zhang, Z., Shrager, J., Jain, M., Chang, C.W., Vallon, O. and Grossman, A.R. (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell, 3, 1331–1348.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Nakako Shibagaki
    • 1
  • Arthur Grossman
    • 1
  1. 1.Department of Plant BiologyCarnegie InstitutionStanfordUSA

Personalised recommendations