Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

  • 2738 Accesses

Sulfite oxidation in plants was a matter of controversial discussion for a long time and still is not finally understood. There is no doubt anymore about the occurrence of sulfite oxidation besides primary sulfate assimilation that takes place in the chloroplast. Sulfate is reduced via sulfite to organic sulfide which is essential for the biosynthesis of S-containing amino acids and other compounds like glutathione. However, it has also been reported that sulfite can be oxidized back to sulfate, e.g. when plants were subjected to SO2 gas. Work from our laboratory has identified sulfite oxidase as a member of molybdenumcontaining enzymes in plants, which seems to be the most important way to detoxify excess of sulfite. In this paper we show how plant cells separate the two counteracting pathways – sulfate assimilation and sulfite detoxification – into different cell organelles. We discuss how these two processes are (co-)regulated and what kind of other sulfite oxidase activities occur in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bick JA, Leustek T (1998) Plant sulfur metabolism – the reduction of sulfate to sulfite. Cur Opin Plant Biol 1: 240–244

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Russell JL (2000) Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Maryland

    Google Scholar 

  • Buchner P, Stuiver CE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136: 3396–3408

    Article  PubMed  CAS  Google Scholar 

  • Calabrese E, Sacco C, Moore G, DiNardi S (1981) Sulfite oxidase deficiency: a high risk factor in SO2, sulfite, and bisulfite toxicity? Med Hypotheses 7: 133–145

    Article  PubMed  CAS  Google Scholar 

  • Clegg SM, Abbatt JPD (2001) Oxidation of SO2 by H2O2 on ice surfaces at 228 K: a sink for SO2 in ice clouds. Atmos Chem Phy Discussions 1: 77–92

    Google Scholar 

  • Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV (1972) Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247: 7759–7766

    PubMed  CAS  Google Scholar 

  • Dittrich AP, Pfanz H, Heber U (1992) Oxidation and reduction of sulfite by chloroplasts and formation of sulfite addition compounds. Plant Physiol 98: 738–744

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynth Res 79: 331–348

    Article  PubMed  CAS  Google Scholar 

  • Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hänsch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J Biol Chem 276: 46989–46994

    Article  PubMed  CAS  Google Scholar 

  • Fromageot P, Vaillant R, Perez-Milan H (1960) Oxidation of sulfite to sulfate by oat roots. Biochim Biophys Acta 44: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV (1998) Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci U S A 95: 6394–6398

    Article  PubMed  CAS  Google Scholar 

  • Garsed SG, Read DJ (1977) Sulphur dioxide metabolism in soy-bean, Glycine max var. Biloxi. I. The effects of light and dark on the uptake and translocation of 35SO2. New Phytol 78: 111–119

    Article  CAS  Google Scholar 

  • Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281: 6884–6888

    Article  PubMed  Google Scholar 

  • Hayashi M, Aoki M, Kato A, Kondo M, Nishimura M (1996) Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J 10: 225–234

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Hüve K (1998) Action of SO2 on plants and metabolic detoxification of SO2. Int Rev Cytochem 177: 255–286

    Article  CAS  Google Scholar 

  • Heber U, Laisk A, Pfanz H, Lange OL (1987) Wann ist SO2 Nährstoff und wann Schadstoff? Ein Beitrag zum Waldschadensproblem. AFZ 27/28/29: 700–705

    Google Scholar 

  • Heimberg M, Fridovich I, Handler P (1953) The enzymatic oxidation of sulfite. J Biol Chem 204: 913–926

    PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138–148

    Article  PubMed  CAS  Google Scholar 

  • Hemann C, Hood BL, Fulton M, Hänsch R, Schwarz G, Mendel RR, Kirk ML, Hille R (2005) Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis. J Am Chem Soc 127: 16567–16577

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (2001) Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Progr Bot 62: 177–192

    CAS  Google Scholar 

  • Hill GR, Thomas MD (1933) Influence of leaf destruction by sulphur dioxide and by clipping on yield of alfalfa. Plant Physiol 8: 223–245

    Article  PubMed  CAS  Google Scholar 

  • Johnson TL, Olsen LJ (2001) Building new models for peroxisome biogenesis. Plant Physiol 127: 731–739

    Article  PubMed  CAS  Google Scholar 

  • Jolivet P, Bergeron E, Meunier JC (1995a) Evidence for sulfite oxidase activity in spinach leaves. Phytochemistry 40: 667–672

    Article  CAS  Google Scholar 

  • Jolivet P, Bergeron E, Zimierski A, Meunier JC (1995b) Metabolism of elemental sulfur and oxidation of sulfite by wheat and spinach chloroplasts. Phytochemistry 38: 9–14

    Article  CAS  Google Scholar 

  • Kaiser G, Martinoia E, Schroppelmeier G, Heber U (1989) Active-transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol 133: 756–763

    CAS  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203: 1–9

    PubMed  CAS  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16: 2693–2704

    Article  PubMed  CAS  Google Scholar 

  • Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91: 973–983

    Article  PubMed  CAS  Google Scholar 

  • Leustek T (2002) Sulfate Metabolism. In: The Arabidopsis Book, CR Somerville and EM Meyerowitz (eds.), American Society of Plant Biologists, Rockville

    Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637–644

    Article  PubMed  CAS  Google Scholar 

  • Linzon SN (1978) Effects of airborne sulfur pollutants on plants. In: Sulfur in the Environment Part II. Ecological Impacts, JO Nriagu (ed.), Wiley, New York: 109–162

    Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93: 7623–7627

    Article  PubMed  CAS  Google Scholar 

  • Miszalski Z, Ziegler H (1992) Superoxide dismutase and sulfite oxidation. Z Naturforsch 47c: 360–364

    Google Scholar 

  • Moyer DT, Geo RH (1935) Absorption of sulphus dioxide by Alfalfa and its relation to leaf injury. Plant Physiol 10: 291–307

    Article  Google Scholar 

  • Mullen RT, Lee MS, Flynn CR, Trelease RN (1997) Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal. Plant Physiol 115: 881–889

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Saha K, Choudhuri MA (2000) A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide-titanium complex formation. Plant Sci 157: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Meyer C, Sano H (2002) Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family. J Exp Bot 53: 1833–1836

    Article  PubMed  CAS  Google Scholar 

  • Nowak K, Luniak N, Witt C, Wustefeld Y, Wachter A, Mendel RR, Hänsch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45: 1889–1894

    Article  PubMed  CAS  Google Scholar 

  • Peiser G, Yang SF (1985) Biochemical and physiological effects of SO2 on nonphotosynthetic processes in plants. In: WE Winner, HA Mooney and RA Goldstein (eds.), Sulfur Dioxide and Vegetation, Stanford University Press, Stanford, California: 148–161

    Google Scholar 

  • Pfanz H, Dietz K-J, Weinerth I, Oppmann B (1990) Detoxification of sulfur dioxide by apoplastic peroxidases. In: Sulfur Nutrition and Sulfur Assimilation in Higher Plants, H Rennenberg, C Brunold, LJ De Kok and I Stulen (eds.), SPB Academic: 229–233

    Google Scholar 

  • Pfanz H, Oppmann B (1991) The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. In: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases, J Lobarzewski, H Greppin, C Penel and T Gaspar (eds.), University of Geneva, Geneva: 401–417

    Google Scholar 

  • Rao IM, Anderson LE (1983) Light and stomatal metabolism: II. Effects of sulfite and arsenite on stomatal opening and light modulation of enzymes in epidermis. Plant Physiol 71: 456–459

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Annu Rev Plant Physiol 35: 121–153

    Article  CAS  Google Scholar 

  • Rennenberg H, Herschbach C (1996) Responses of plants to atmospheric sulphur. In: Plant Response to Air Pollution, M Yunus and M Iqbal (eds.), Wiley, Chichester: 285–294

    Google Scholar 

  • Rennenberg H, Polle A (1994) Metabolic consequences of atmospheric sulphur influx into plants. In: Plant Responses to the Gaseous Environment, R Alscher and A Wellburn A(eds.), Chapman & Hall, London: 165–181

    Google Scholar 

  • Rennenberg H, Sekiya J, Wilson LG, Filner P (1982) Evidence for an intracellular sulfur cycle in cucumber leaves. Planta 154: 516–524

    Article  CAS  Google Scholar 

  • Reumann S, Maier E, Heldt HW, Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251: 359–366

    Article  PubMed  CAS  Google Scholar 

  • Rost M, Karge E, Klinger W (1998) What do we measure with luminol-, lucigenin- and penicillin-amplified chemiluminescence? 1. Investigations with hydrogen peroxide and sodium hypochlorite. J Biolumin Chemilumin 13: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136: 2443–2450

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Otsubo T, Kondo N (1982) Participation of hydrogen peroxide in the inactivation of Calvin cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23: 1009–1018

    CAS  Google Scholar 

  • Thomas MD, Hendricks RH, Hill GR (1944) Some chemical reactions of sulphur dioxide after absorption by Alfalfa and sugar beets. Plant Physiol 19: 212–226

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooij TAW, de Kok LJ, Haneklaus S, Schnug E (1997) Uptake and metabolism of sulphur dioxide by Arabidopsis thaliana. New Phytol 135: 101–107

    Article  Google Scholar 

  • Veljović-Jovanović S, Oniki T, Takahama U (1998) Detection of monodehydro ascorbic acid radical in sulfite-treated leaves and mechanism of its formation. Plant Cell Physiol 39: 1203–1208

    Google Scholar 

  • Wurfel M, Haberlein I, Follmann H (1990) Inactivation of thioredoxin by sulfite ions. FEBS Lett 268: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci U S A 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

  • Ziegler I (1974) Action of sulphite on plant malate dehydrogenase. Phytochemistry 13: 2411–2416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hänsch, R., Mendel, R.R. (2008). Sulfite Oxidation in Plants. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_12

Download citation

Publish with us

Policies and ethics