Skip to main content

Linkages Between Trace Elements in Food Crops and Human Health

  • Chapter
Book cover Micronutrient Deficiencies in Global Crop Production

Malnutrition accounts for more than 30 million deaths a year in mostly resource-poor families in the developing world. Much of this malnutrition is the result of insufficient intakes of available trace elements in the diets of the poor. Dysfunctional food systems are responsible for this global crisis in human health. Importantly, agricultural systems are the foundation upon which all nutrients enter the human food chain. Thus, agriculture must be contributing to dysfunctional food systems and the resulting malnutrition. Only through linking agricultural systems to human nutrition can sustainable solutions to malnutrition be forthcoming. This review focuses on many agricultural practices that can be used to change agricultural systems in ways that will help supply enough essential trace elements to the poor to meet their needs for healthy and productive lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaway, W. H. (1975). The effects of soils and fertilisers on human and animal nutrition. USDA-ARS Agriculture Information Bulletin No. 378. Washington, DC, US Government Printing Office. Ref Type: Pamphlet.

    Google Scholar 

  • Allaway, W. H. (1986). Soil-plant-animal and human interrelationships in trace element nutrition. In Mertz, W. (Ed.), Trace Elements in Human and Animal Nutrition (5th ed., pp. 465–488). Academic, Orlando, San Diego, CA, New York, Austin, London, Montreal, Sydney, Tokyo, Toronto.

    Google Scholar 

  • Balint, A. F., Kovacs, G., Erdei, L., Sutka, J. (2001). Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Research Communications, 29: 375–382.

    CAS  Google Scholar 

  • Bãnziger, M., Long, J. (2000). The potential for increasing the iron and zinc density of maize through plant-breeding. Food and Nutrition Bulletin, 21: 397–400.

    Google Scholar 

  • Becker, K., Frei, M. (2004). Improving the nutrient availability in rice–biotechnology or biodiversity? Agriculture + Rural Development, 11: 64–65.

    Google Scholar 

  • Benito, P., Miller, D. (1998). Iron absorption and bioavailability: An updated review. Nutrition Research, 18: 581–603.

    Article  CAS  Google Scholar 

  • Bouis, H. E. (1999). Economics of enhanced micronutrient density in food staples. Field Crops Research, 60: 165–173.

    Article  Google Scholar 

  • Broek, N. V. D. (2003). Anaemia and micronutrient deficiencies. British Medical Bulletin, 67: 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak, I. (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247: 3–24.

    Article  CAS  Google Scholar 

  • Cakmak, O., Ozturk, L., Karanlik, S., Ozkan, H., Kaya, Z., Cakmak, I. (2001). Tolerance of 65 durum wheat genotypes to zinc deficiency in a calcareous soil. Journal of Plant Nutrition, 24: 1831–1847.

    Article  CAS  Google Scholar 

  • Cao, X. Y., Jiang, X. M., Kareem, A., Dou, Z. H., Rakeman, M. R., Zhang, M. L. (1994). Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in Xinjiang, China. Lancet, 344: 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Chassy, B. M., Mackey, M. (Eds.) (2003). The future of food and nutrition with biotechnology. Journal of the American College of Nutrition, 21 (Supplement), 157S–221S.

    Google Scholar 

  • Clugston, G. A., Smith, T. E. (2002). Global nutrition problems and novel foods. Asia Pacific Journal of Clinical Nutrition, 11: S100–S111.

    Article  CAS  Google Scholar 

  • Combs, G. F., Jr., Welch, R. M. (1998). Creating Healthful Food Systems: Linking Agriculture to Human Needs. Cornell International Institute for Food, Agriculture and Development. Ithaca, NY.

    Google Scholar 

  • Copenhagen Consensus (2004). Copenhagen Consensus 2004 Today’s challenge–Tomorrow’s opportunity. Available at www.copenhagenconsensus.com and http://www.copenhagenconsensus.com/Default.aspx?ID=158.

  • Darnton-Hill, I., Webb, P., Harvey, P. W., Hunt, J. M., Dalmiya, N., Chopra, M. (2005). Micronutrient deficiencies and gender: Social and economic costs. American Journal of Clinical Nutrition, 81: 1198S–1205S.

    PubMed  CAS  Google Scholar 

  • Fairweather-Tait, S. J., Hurrell, R. F. (1996). Bioavailability of minerals and trace elements. Nutrition Research Reviews, 9: 295–324.

    Article  PubMed  CAS  Google Scholar 

  • Fordyce, F. M., Zhang, G. D., Green, K., Liu, X. P. (2000). Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Applied Geochemistry, 15: 117–132.

    Article  CAS  Google Scholar 

  • Forssard, E., Bucher, M., Mächler, F., Mozafar, A., Hurrell, R. (2000). Review: Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 80: 861–879.

    Article  Google Scholar 

  • Fresco, L. O. (2000). Scientific and ethical challenges in agriculture to meet human needs. Food, Nutrition and Agriculture, 27: 4–13.

    Google Scholar 

  • Garcia-Casal, M. N., Osorio, C., Landaeta, M., Leets, I., Matus, P., Fazzino, F. (2005). High prevalence of folic acid and vitamin B12 deficiencies in infants, children, adolescents and pregnant women in Venezuela. European Journal of Clinical Nutrition, 59: 1064–1070.

    Article  PubMed  CAS  Google Scholar 

  • Ge, K., Yang, G. (1993). The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. American Journal of Clinical Nutrition, 57 (Suppl.): 259S–263S.

    PubMed  CAS  Google Scholar 

  • Genc, Y., Humphries, J. M., Lyons, G. H., Graham, R. D. (2005). Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. Journal of Trace Elements in Medicine and Biology, 18: 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff, G. C., Gabelman, W. H. (1983). Genetic basis of inorganic plant nutrition. In Lauchli, A., Bieleski, R. L. (Eds.), Inorganic Plant Nutrition (1st ed., pp. 453–480). Springer, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Gibson, R. S. (2003). Concurrent micronutrient deficiencies in developing countries: Problems and solutions. Proceedings of the Nutrition Society of New Zealand, 28: 21–34.

    CAS  Google Scholar 

  • Graham, R. D. (1984). Breeding for nutritional characteristics in cereals. Advances in Plant Nutrition, 1: 57–102.

    Google Scholar 

  • Graham, R. D. (1988a). Development of wheats with enhanced nutrient efficiency: Progress and potential. In Klatt, A. R. (Ed.), Wheat Production Constraints in Tropical Environments. Proceedings of the International Conference, Maj, Thailand, 19–23 January, 1987 (pp. 305–320). CIMMYT, Mexico DF, Mexico.

    Google Scholar 

  • Graham, R. D. (1988b). Genotypic differences in tolerance to manganese deficiency. In Graham, R. D., Hannam, R. J., Uren, N. C. (Eds.), Manganese in Soils and Plants (pp. 216–276). Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Graham, R. D., Welch, R. M. (1996). Breeding for staple-food crops with high micronutrient density (Rep. No. 1). International Food Policy Research Institute., Washington, DC.

    Google Scholar 

  • Graham, R. D., Senadhira, D., Beebe, S. E., Iglesias, C. (1998). A strategy for breeding staple-food crops with high micronutrient density. Soil Science and Plant Nutrition, 43: 1153–1157.

    Google Scholar 

  • Graham, R. D., Senadhira, D., Beebe, S., Iglesias, C., Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crops Research, 60: 57–80.

    Article  Google Scholar 

  • Graham, R. D., Welch, R. M., Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy, 70: 77–142.

    Article  Google Scholar 

  • Grunes, D. L., Allaway, W. H. (1985). Nutritional quality of plants in relation to fertiliser use. In Engelstad, O. P. (Ed.), Fertiliser Technology and Use (3rd ed., pp. 589–619). Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Grusak, M. A. (2002). Enhancing mineral content in plant food products. Journal of the American College of Nutrition, 21: 178S–183S.

    PubMed  Google Scholar 

  • Grusak, M. A., DellaPenna, D. (1999). Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Physiology, 50: 133–161.

    Article  CAS  Google Scholar 

  • Hotz, C., Brown, K. H. (2004). International Zinc Nutrition Consultative Group (IZiNCG). Technical Document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 25: S91–S203.

    Google Scholar 

  • House, W. A. (1999). Trace element bioavailability as exemplified by iron and zinc. Field Crops Research, 60: 115–141.

    Article  Google Scholar 

  • House, W. A., Welch, R. M. (1989). Bioavailability of and interactions between zinc and selenium in rats fed wheat grain intrinsically labeled with 65Zn and 75Se. Journal of Nutrition, 119: 916–921.

    PubMed  CAS  Google Scholar 

  • Holloway, R. E. (1997) Zinc as a subsoil nutrient for cereals. Ph.D. thesis, University of Adelaide, Adelaide, South Australia.

    Google Scholar 

  • Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L., Cakmak, I. (1999). Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research, 63: 87–98.

    Article  Google Scholar 

  • Kennedy, G., Nantel, G., Shetty, P. (2003). The scourge of “hidden hunger”: Global dimensions of micronutrient deficiencies. Food, Nutrition and Agriculture, 32: 8–16

    Google Scholar 

  • King, J. C. (2002). Biotechnology: A solution for improving nutrient bioavailability. International Journal for Vitamin and Nutrition Research, 72: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, H. W., Krespine, V., Lemaire, A., Coudray, C., Feillet-Coudray, C., Messager, A. (2003). Wheat variety has a major influence on mineral bioavailability; Studies in rats. Journal of Cereal Science, 37: 257–266.

    Google Scholar 

  • Lopez, M. A., Martos, F. C. (2004). Iron availability: An updated review. International Journal of Food Science and Nutrition, 55: 597–606.

    Article  CAS  Google Scholar 

  • Mackey, M. A. (2003). The developing world benefits from plant biotechnology. Journal of Nutrition Education and Behavior, 35: 210–214.

    Article  PubMed  Google Scholar 

  • Mäkelä, A.-L., Näntö, V., Mäkelä, P., Wang, W. (1993). The effect of nationwide selenium enrichment of fertilisers on selenium status of healthy Finnish medical students living in south western Finland. Biological Trace Element Research, 36: 151–157.

    Article  PubMed  Google Scholar 

  • Mason, J. B., Lotfi, M., Dalmiya, N., Sethuraman, K., Deitchler, M., Geibel, S. (2001). The micronutrient report: Current progress in the control of vitamin A, iodine, and iron deficiencies. Micronutrient Initiative/International Development Research Center, Ottowa.

    Google Scholar 

  • McCullum, C., Benbrook, C., Knowles, L., Roberts, S., Schryver, T. (2003). Application of modern biotechnology to food and agriculture: Food systems perspective. Journal of Nutrition Education and Behavior, 35: 319–332.

    Article  PubMed  Google Scholar 

  • McInerney, J. (2002). The production of food: From quantity to quality. Proceedings of the Nutrition Society, 61: 273–279.

    Article  PubMed  Google Scholar 

  • McIntyre, B. D., Bouldin, D. R., Urey, G. H., Kizito, F. (2001). Modeling cropping strategies to improve human nutrition in Uganda. Agricultural Systems, 67: 105–120.

    Article  Google Scholar 

  • Mertz, W. (1987) Trace Elements in Human and Animal Nutrition. Vol. 1 (5th ed.). Academic, San Diego, CA, New York.

    Google Scholar 

  • Monasterio, I., Graham, R. D. (2000). Breeding for trace minerals in wheat. Food and Nutrition Bulletin, 21: 392–396.

    Google Scholar 

  • Moraghan, J. T. (1994). Accumulation of zinc, phosphorus, and magnesium by navy bean seed. Journal of Plant Nutrition, 17: 1111–1125.

    Article  CAS  Google Scholar 

  • Müller, O., Krawinkel, M. (2005). Malnutrition and health in developing countries. Canadian Medical Association Journal, 173: 279–286.

    Article  PubMed  Google Scholar 

  • Mwanga, R. O. M., Cloete, M. (2003). The role of horticulture: Issues, opportunities and constraints. Horticultural Science in Emerging Economies: Issues and Constraints, 45–51.

    Google Scholar 

  • National Research Council (1996). Lost Crops of Africa, Grains, Vol. 1. National Academy, Washington, DC.

    Google Scholar 

  • Nielsen, F. H. (1997). Beyond copper, iodine, selenium and zinc: Other elements that will be found important in human nutrition by the year 2000. In Fischer, P.W. F., L’Abbé, M. R., Cockell, K. A., Gibson, R. S. (Eds.), Trace Elements in Man and Animals–9. Proceedings of the Ninth International Symposium on Trace Elements in Man and Animals NRC Research Press, Ottawa.

    Google Scholar 

  • Peck, N., Grunes, D. L., Welch, R. M., MacConald, G. E. (1980). Nutritional quality of vegetable crops as affected by phosphorus and zinc fertilisers. Agronomy Journal, 72: 528–534.

    Article  CAS  Google Scholar 

  • Rengel, Z., Graham, R. D. (1995a). Wheat genotypes differ in Zn efficiency when grown in chelate- buffered nutrient solution. Plant and Soil, 176: 307–316.

    Article  Google Scholar 

  • Rengel, Z., Graham, R. D. (1995b). Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. 2. Nutrient uptake. Plant and Soil, 176: 317–324.

    Article  CAS  Google Scholar 

  • Rengel, Z., Romheld, V. (2000). Differential tolerance to Fe and Zn deficiencies in wheat germplasm. Euphytica, 113: 219–225.

    Article  CAS  Google Scholar 

  • Rengel, Z., Batten, G. D., Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density of edible portions of field crops. Field Crops Research, 60: 27–40.

    Article  Google Scholar 

  • Rouse, T. I., Davis, D. P. (2004). Exploring a vision: Integrating knowledge for food and health. A workshop summary. Board on Agriculture and Natural Resources, Division on Earth and Life Studies, National Research Council of the National Academies of Sciences, The National Academies Press, Washington, DC.

    Google Scholar 

  • Saied, H. T., Shamsuddin, A. M. (1998). Up-regulation of the tumor suppressor gene p53 and WAF1 gene expression by IP6 in HT-29 human colon carcinoma cell line. Anticancer Research, 18: 1479–1484.

    PubMed  CAS  Google Scholar 

  • Salunkhe, D. K., Desai, B. B. (1988). Effects of agricultural practices, handling, processing, and storage on vegetables. In Karma, E., Harris, R. S. (Eds.), Nutritional Evaluation of Food Processing (3rd ed., pp. 23–71). Avi Book, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Sander, D. H., Allaway, W. H., Olson, R. A. (1987). Modification of nutritional quality by environment and production practices. In Olson, R. A., Frey, K. J. (Eds.), Nutritional Quality of Cereal Grains and Agronomic Improvements. Agronomy Monograph no. 28 (pp. 45–82). American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Sanghvi, T. G. (1996). Economic Rationale for Investing in Micronutrient Programs. A Policy Brief Based on New Analyses. Office of Nutrition, Bureau for Research and Development, United States Agency for International Development, Washington, DC.

    Google Scholar 

  • Schachtman, D. P., Barker, S. J. (1999). Molecular approaches for increasing the micronutrient density in edible portions of food crops. Field Crops Research, 60: 81–92.

    Article  Google Scholar 

  • Shamsuddin, A. M. (1999). Metabolism and cellular functions of IP6: A review. Anticancer Research, 19: 3733–3736.

    PubMed  CAS  Google Scholar 

  • Sobal, J. (1999). Food system globalization, eating transformations, and nutrition transitions. In Grew, R. (Ed.), Food in Global History (pp. 171–193). Westview, Boulder, CO.

    Google Scholar 

  • Stabler, S. P., Allen, R. H. (2004). Vitamin B12 deficiency as a worldwide problem. Annual Review of Nutrition, 24: 299–326.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, F. J. (1991). Organic matter-micronutrient reactions in soil. In Mortvedt, J. J., Cox, F. R., Shuman, L. M., Welch, R. M. (Eds.), Micronutrients in Agriculture (2nd ed., pp. 145–186). Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, Composition, Reactions (2nd ed.). Wiley, New York.

    Google Scholar 

  • Subbulakshmi, G., Naik, M. (1999). Food fortification in developing countries–Current status and strategies. Journal of Food Science and Technology–Mysore, 36: 371–395.

    Google Scholar 

  • Theil, E. C., Burton, J. W., Beard, J. L. (1997). A sustainable solution for dietary iron deficiency through plant biotechnology and breeding to increase seed ferritin control. European Journal Biochemistry, 51: S28–S31.

    Google Scholar 

  • Thompson, J. A. (2002). Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology. Journal of Nutrition, 132: 3441S–3442S.

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature (London), 418: 671–677.

    Article  CAS  Google Scholar 

  • Tontisirin, K., Nantel, G., Bhattacharjee, L. (2002). Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proceedings of the Nutrition Society, 61: 243–250.

    Article  PubMed  Google Scholar 

  • Underwood, B. A. (2003). Scientific research: Essential, but is it enough to combat world food insecurities? 11th International Symposium on Trace Elements in Man and Animals. June 2–5, 2002, Berkeley, CA. Journal of Nutrition, 133: 1434S–1437S.

    PubMed  CAS  Google Scholar 

  • Underwood, B. A., Smitasiri, S. (1999). Micronutrient malnutrition: Policies and programs for control and their implications. Annual Review of Nutrition, 19: 303–324.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition (3rd ed.). Academic, New York, London.

    Google Scholar 

  • Van Campen, D. R., Glahn, R. P. (1999). Micronutrient bioavailability techniques: Accuracy, problems and limitations. Field Crops Research, 60: 93–113.

    Article  Google Scholar 

  • Welch, R. M. (1986). Effects of nutrient deficiencies on seed production and quality. Advances in Plant Nutrition, 2: 205–247.

    CAS  Google Scholar 

  • Welch, R. M. (1995). Micronutrient nutrition of plants. Critical Reviews in Plant Science, 14: 49–82.

    Article  CAS  Google Scholar 

  • Welch, R. M. (1999). Importance of seed mineral nutrient reserves in crop growth and development. In Rengel, Z. (Ed.), Mineral Nutrition of Crops. Fundamental Mechanisms and Implications (pp. 205–226). Food Products Press, New York.

    Google Scholar 

  • Welch, R. M. (2001). Micronutrients, agriculture and nutrition; linkages for improved health and well being. In Singh, K., Mori, S., Welch, R. M. (Eds.), Perspectives on the Micronutrient Nutrition of Crops (pp. 247–289). Scientific Publishers (India), Jodhpur, India.

    Google Scholar 

  • Welch, R. M. (2002). Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. Journal of Nutrition, 132: 495S–499S.

    PubMed  Google Scholar 

  • Welch, R. M., Graham, R. D. (1999). A new paradigm for world agriculture: Meeting human needs–Productive, sustainable, nutritious. Field Crops Research, 60: 1–10.

    Article  Google Scholar 

  • Welch, R. M., Graham, R. D. (2002). Breeding crops for enhanced micronutrient content. Plant and Soil, 245: 205–214.

    Article  CAS  Google Scholar 

  • Welch, R. M., House, W. A. (1984). Factors affecting the bioavailability of mineral nutrients in plant foods. In Welch, R. M., Gabelman, W. H. (Eds.), Crops as Sources of Nutrients for Humans (pp. 37–54). American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Welch, R. M., Van Campen, D. R. (1975). Iron availability to rats from soybeans. Journal of Nutrition, 105: 253–256.

    PubMed  CAS  Google Scholar 

  • Welch, R. M., House, W. A., Allaway, W. H. (1974). Availability of zinc from pea seeds to rats. Journal of Nutrition, 104: 733–740.

    PubMed  CAS  Google Scholar 

  • Welch, R. M., Combs, G. F., Jr., Duxbury, J. M. (1997). Toward a “Greener” revolution. Issues in Science and Technology, 14: 50–58.

    Google Scholar 

  • Welch, R. M., House, W. A., Beebe, S., Cheng, Z. (2000). Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. Journal of Agricultural and Food Chemistry, 48: 3576–3580.

    Article  PubMed  CAS  Google Scholar 

  • Welch, R. M., House, W. A., Ortiz-Monasterio, I., Cheng, Z. (2005). Potential for improving bioavailable zinc in wheat grain (Triticum Species) through plant breeding. Journal of Agricultural and Food Chemistry, 53: 2176–2180.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1999). Malnutrition Worldwide. Available at http://www.who.int/nut/malnutrition_worldwide.htm.

  • World Health Organization (2002). The World Health Report 2002. Reducing Risks, Promoting Healthy Life World Health Organization, Geneva.

    Google Scholar 

  • World Health Organization (2003). Joint WHO/FAO Expert Consultation on Diet nutrition and the prevention of chronic diseases (2002: Geneva, Switzerland) (World Health Technical Report Series, No. 916). World Health Organization, Geneva.

    Google Scholar 

  • World Health Organization (2004). Global strategy on diet, physical activity and health. Fifty-seventh World Health Assembly Agenda item 12.6, 22 May 2004 (Rep. No. WHA57.17). World Health Organization, Geneva.

    Google Scholar 

  • Yip, R. (1997). The challenge of improving iron nutrition: Limitations and potentials of major intervention approaches. European Journal of Clinical Nutrition, 51: S16–S24.

    PubMed  Google Scholar 

  • Zhou, J. R., Erdman, J. W., Jr. (1995). Phytic acid in health and disease. Critical Reviews in Food Science and Nutrition, 35: 495–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Welch, R.M. (2008). Linkages Between Trace Elements in Food Crops and Human Health. In: Alloway, B.J. (eds) Micronutrient Deficiencies in Global Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6860-7_12

Download citation

Publish with us

Policies and ethics