Advertisement

Feedback Control Using Extremum Seeking Method for Drag Reduction of a 3D Bluff Body

  • Jean-François Beaudoin
  • Olivier Cadot
  • José Eduardo Wesfreid
  • Jean-Luc Aider
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 7)

Abstract

The flow around a modified Ahmed body with a curved rear section is studied at Re > 2.106 and a line of vortex generators (VG) is used as actuators. By varying the angle α of the VG we observe an optimal value of α defining a minimum of aerodynamic drag and correspondingly a maximum base pressure coefficient. As this optimum value is shown to be Reynolds dependent we use an extremum control strategy for the system to find this optimal condition autonomously. It consists of the synchronous detection of the response measured in either the base pressure signal or in the drag and a slow sinusoidal modulation of the angle of the VG. It is finally demonstrated that the closed-loop system is robust and reacts successfully to unpredictable changes in the external flow conditions.

Key words

Feedback loop control drag reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Protas and A. Styczek. Optimal rotary control of the cylinder wake in the laminar regime, Phys. Fluids 14(7), 2002, 2073–2087.CrossRefGoogle Scholar
  2. 2.
    Y. Wang, G. Haller, A. Banaszuk, and G. Tadmor. Closed-loop Lagrangian separation control in a bluff body shear flow model, Phys. Fluids 15(8), 2003, 2251–2266.CrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Kim. Control of turbulent boundary layers, Phys. Fluids 15(5), 2003, 1093–1105.CrossRefMathSciNetGoogle Scholar
  4. 4.
    C. M. Ho and Y. C. Tai. Review: MEMS and its applications for flow control, J. Fluids Eng. 118, 1996, 437–447.CrossRefGoogle Scholar
  5. 5.
    C. M. Ho and Y. C. Tai. Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30, 1998, 579–612.CrossRefGoogle Scholar
  6. 6.
    T. R. Bewley. Flow control: New challenges for a new Renaissance, Prog. Aerospace Sci. 37, 2001, 21–58.CrossRefGoogle Scholar
  7. 7.
    T. R. Bewley, P. Moin, and R. Temam. DNS-based predictive control of turbulence: An optimal benchmark for feedback algorithms, J. Fluid Mech. 447, 2001, 179–225.MATHMathSciNetGoogle Scholar
  8. 8.
    M. Krstić, I. Kanellakopoulos, and P. V. Kokotovic. Nonlinear and Adaptive Control Design, J. Wiley, New York, 1995.Google Scholar
  9. 9.
    M. Krstić and H. H. Wang. Stability of extremum seeking feedback for general nonlinear dynamic systems, Automatica 36, 2000, 595–601.MATHCrossRefGoogle Scholar
  10. 10.
    J. F. Beaudoin, O. Cadot, J. L. Aider, and J. E. Wesfreid. Bluff-body drag reduction by extremum seeking control, J. Fluids Struc. 22, 2006, 973–978.CrossRefGoogle Scholar
  11. 11.
    J. F. Beaudoin, O. Cadot, J. L. Aider, and J. E. Wesfreid. Drag reduction of a bluff-body using adaptive control methods, Phys. Fluids 18, 2006, 085107.CrossRefGoogle Scholar
  12. 12.
    Ahmed, S. R. Influence of base slant on the wake structure and drag of road vehicles, J. Fluids Eng. 105, 1983, 429–434.CrossRefGoogle Scholar
  13. 13.
    J. F. Beaudoin. Contrôle actif d’écoulement en aérodynamique automobile, PhD Thesis, Ecole des Mines de Paris, 2004.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jean-François Beaudoin
    • 1
  • Olivier Cadot
    • 2
  • José Eduardo Wesfreid
    • 3
  • Jean-Luc Aider
    • 1
  1. 1.Department of Research and InnovationPSA Peugeot-CitroënVélizy-VillacoublayFrance
  2. 2.Unité de MécaniqueENSTAPalaiseauFrance
  3. 3.PMMH UMR 7636-CNRS-ESPCIParis Cedex 5France

Personalised recommendations