Modelling Fabric-Reinforced Membranes with the Discrete Element Method

  • Dirk Ballhause
  • Manfred König
  • Bernd Kröplin
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 8)


A model for fabrics and fabric reinforced membranes is presented, in which the Discrete ElementMethod (DEM) is applied to a microstructure representation of fabrics on the yarn level. The unit cell is described by discrete mass points and rheological elements. Their assembly represents the relevant deformation mechanisms like crimp interchange, trellising or locking. Additional interaction mechanisms are implemented that account for a coating or embedding of the fabric. In the framework of a Discrete Element description the model is intrinsically dynamic since the equations of motion are solved numerically for every mass point using a predictor-corrector scheme, i.e. an explicit finite difference method. With this model the influences of different microscopic material features on the macroscopic system response are studied, preserving directly the information of the local microstructure deformation. All micromechanisms are implemented in a modular manner in order to make the model adaptable to materials that range from pure fabrics to fabric reinforced membranes. Numerical results are presented that demonstrate the plausibility of our approach.

Key words

woven fabric textile membranes microstructure representation Discrete Element Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hearle JWS (1985) The new revolution in textile technology. Physics in Technology 16:269–281.CrossRefGoogle Scholar
  2. 2.
    Potluri P, Sharma S, Ramgulam R (2001) Comprehensive drape modelling for moulding 3D textile preforms. Composites Part A 32:1415–1424.CrossRefGoogle Scholar
  3. 3.
    Ishikawa T, Chou TW(1983) Nonlinear behavior of woven fabric composites. Journal of Composite Materials 17(5):399–413.CrossRefGoogle Scholar
  4. 4.
    Haas R (1917) The stretching of the fabric and the deformation of the envelope in nonrigid balloons, NACA Report No. 16.Google Scholar
  5. 5.
    Peirce FT (1937) The geometry of cloth structure. Journal of the Textile Institute Transactions 28:T45–T96.CrossRefGoogle Scholar
  6. 6.
    Kawabata S, Niwa M, Kawai H (1973) The finite-deformation theory of plain-weave fabrics; Part I: The biaxial-deformation theory. Journal of the Textile Institute 64(2):21–46.CrossRefGoogle Scholar
  7. 7.
    Kawabata S, Niwa M, Kawai H (1973) The finite-deformation theory of plain-weave fabrics; Part III: The shear-deformation theory. Journal of the Textile Institute 64(2):62–85.CrossRefGoogle Scholar
  8. 8.
    P. Boisse, M. Borr, K. Buet, A. Cherouat (1997) Finite element simulations of textile composite forming including the biaxial fabric behaviour. Composites Part B 28(4):453–464.CrossRefGoogle Scholar
  9. 9.
    Glaessgen EH, Pastore CM, Griffin OH, Birger A (1996) Geometrical and finite element modelling of textile composites. Composites: Part B 27(1):43–50.CrossRefGoogle Scholar
  10. 10.
    Boubaker BB, Haussy B, Ganghoffer J-F (2002) Modèles discrets de structures tissées: Analyse de stabilité et de drapé. Comptes Rendues Mécanique 330(12):871–877.MATHCrossRefGoogle Scholar
  11. 11.
    Bićanić N (2004) Discrete Element Methods. In Encyclopedia of Computational Mechanics, Stein E, de Borst R, Hughes TJR (Eds), John Wiley & Sons.Google Scholar
  12. 12.
    Allen MP, Tildesley DJ (1987) Computer Simulations of Liquids. Oxford Science Publications.Google Scholar
  13. 13.
    Mack C, Taylor HM (1956) The fitting of woven cloth to surfaces. Journal of the Textile Institute 47:477–488.Google Scholar
  14. 14.
    Sidhu RMJS, Averill RC, Riaz M, Pourboghrat F (2001) Finite element analysis of textile composite preform stamping. Composite Structures 52(3–4):483–497.CrossRefGoogle Scholar
  15. 15.
    Peng XQ, Cao J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Composites Part A 36(6):859–874.CrossRefGoogle Scholar
  16. 16.
    Buet-Gautier K, Boisse P (2001) Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Experimental Mechanics 41(3):1–10.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Dirk Ballhause
    • 1
  • Manfred König
    • 1
  • Bernd Kröplin
    • 1
  1. 1.Institute of Statics and Dynamics of Aerospace Structures (ISD)University of StuttgartStuttgartGermany

Personalised recommendations