Skip to main content

Nonlinear Finite Element Analysis of Inflatable Prefolded Membrane Structures under Hydrostatic Loading

  • Chapter
Textile Composites and Inflatable Structures II

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 8))

  • 1610 Accesses

Abstract

Due to their flexibility shell or membrane like structures subjected to gas or fluid loading or gas/fluid support undergo large deformations. In order to describe this deformation dependent loading, where value and direction of the pressure loading are a function of the current configuration of the shell structure, the gas or fluid volumes, which are enclosed by the thin walled structure, have to be considered for the appropriate constitutive equations. Then the numerical formulation of the fluid or gas loading can be derived via an analytical meshfree description for the fluid/gas, which yields a special structure of equations involving the change of the gas or fluid volume respectively the change of the wetted part of the shell surface, see [2, 1113]. This procedure finally leads to the so-called load-stiffness matrix, to which (in the case of enclosed gas/fluid volumes) several rank updates describing the coupling of the fluid or gas with the structural displacements in addition to the deformation dependence of the pressure load [15] are added. The numerical examples of e.g. (a) deploying simply folded membrane structures and (b) multi-chamber structures containing fluid and air in arbitrary combination demonstrate, how the simulation of structures with static gas and fluid loading or support can be efficiently performed without discretizing the fluid respectively the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwar HO (1967) Inflatable dams. Journal of the Hydraulics Division, ASCE 93:99–119.

    Google Scholar 

  2. Bonet J, Wood RD, Mahaney J, Heywood P (2000) Finite element analysis of air supported membrane structures. Computer Methods in Applied Mechanics and Engineering 190:579–595.

    Article  MATH  Google Scholar 

  3. Faires JD, Burden RL (1994) Numerische methoden. Spektrum Akademischer Verlag.

    Google Scholar 

  4. Freeland RE, Bilyeu GD, Veal GR, Mikulas MM (1998) Inflatable deployable space structures Technology summary. International Aeronautical Federation IAF-98-1.5.01.

    Google Scholar 

  5. Gebhardt M (2005) Hydraulische und statische Bemessung von Schlauchwehren. PhD Thesis, Institut für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe (TH) [in German].

    Google Scholar 

  6. Luchsinger RH, Pedretti A, Steingruber A, Pedretti M (2004) The new structural concept Tensairity: Basic principles. In Proceedings of the Second Conference of Structural Engineering, Mechanics and Computation, A.A. Balkema/Swets Zeitlinger, Lisse.

    Google Scholar 

  7. Haßler M, Schweizerhof K (2007) On the static interaction of fluid and gas loaded multi-chamber systems in a large deformation finite element analysis. Computer Methods in Applied Mechanics and Engineering, accepted for publication.

    Google Scholar 

  8. Hauptmann R, Schweizerhof K (1998) A systematic development of’ solid-shell’ element formulations for linear and non-linear analysis employing only displacement degrees of freedom. International Journal for Numerical Methods in Engineering 42:49–69.

    Article  MATH  Google Scholar 

  9. Knebel K (1997) Stabilität von Stahlzylindern mit unilateralen Randbedingungen bei statischen und dynamischen Beanspruchungen. PhD Tthesis, Institut für Mechanik der Universität Karlsruhe (TH) [in German].

    Google Scholar 

  10. Rumpel T (2003) Effiziente Diskretisierung von statischen Fluid-Struktur-Problemen bei großen Deformationen. PhD Thesis, Institut fürMechanik der Universität Karlsruhe (TH) [in German].

    Google Scholar 

  11. Rumpel T, Schweizerhof K (2003) Volume-dependent pressure loading and its influence on the stability of structures. International Journal for Numerical Methods in Engineering 56:211–238.

    Article  MATH  Google Scholar 

  12. Rumpel T, Schweizerhof K (2004) Hydrostatic fluid loading in non-linear finite element analysis. International Journal for Numerical Methods in Engineering 59:849–870.

    Article  MATH  Google Scholar 

  13. Rumpel T, Schweizerhof K, Haßler M (2005) Efficient finite element modelling and simulation of gas and fluid supported membrane and shell structures. In Textile Composites and Inflatable Structures, Onate E, Kröplin B (Eds.). Springer, pp. 153–172.

    Google Scholar 

  14. Schweizerhof K (1982) Nichtlineare Berechnung von Tragwerken unter verformungsabhängiger Belastung. PhD Thesis, Institut für Baustatik der Universität Stuttgart [in German].

    Google Scholar 

  15. Schweizerhof K, Ramm E (1984) Displacemant dependent pressure loads in non-linear finite element analyses. Computers & Structures 18:1099–1114.

    Article  MATH  Google Scholar 

  16. Schweizerhof K (1989) Quasi-Newton Verfahren und Kurvenverfolgungsalgorithmen für die Lösung nichtlinearer Gleichungssysteme in der Strukturmechanik. Institut für Baustatik der Universität Karlsruhe (TH) [in German].

    Google Scholar 

  17. Wriggers P (2001) Nichtlineare Finite-Element-Methoden. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  18. Ziegler H (1977) An Introduction to Thermomechanics. North-Holland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  19. Zienkiewicz OC, Taylor RL (2000) The Finite Element Method, Vol. 1. Butterwoth-Heinemann

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Haßler, M., Schweizerhof, K. (2008). Nonlinear Finite Element Analysis of Inflatable Prefolded Membrane Structures under Hydrostatic Loading. In: Oñate, E., Kröplin, B. (eds) Textile Composites and Inflatable Structures II. Computational Methods in Applied Sciences, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6856-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6856-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6855-3

  • Online ISBN: 978-1-4020-6856-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics