Effects of Estradiol and DHEA on Morphological Synaptic Plasticity

  • Tibor Hajszan
  • Zsofia Hoyk
  • Luis Miguel Garcia-Segura
  • Arpad Parducz

Experimental data demonstrate that the nervous system is widely influenced by sex hormones, and the brain is continuously shaped by the environment via the changing hormone milieu throughout the entire life. The effects of gonadal hormones extend beyond regulating gonadotropin secretion; they are able to alter the structure of the adult nervous system by changing neuron and synapse numbers, as well as dendritic and synaptic morphology. These structural modifications are believed to serve as a morphological basis for varying behavior and cellular activity. In this review, we discuss the hormonally induced synaptic remodeling in different hypothalamic nuclei and in the hippocampus, focusing on specificity of action, time course, and functional consequences of synaptic alterations. It has been shown that the effect of estradiol is highly specific. In the arcuate nucleus, spine synapses and GABAergic axo-somatic terminals are affected, while in case of the hippocampus, estrogen induces the formation of spine synapses. Morphological and electrophysiological data show that synaptic remodeling could be very rapid. The neurosteroid dehydroepiandrosterone can also induce synaptic plasticity, reproducing the robust synaptogenic effect of estrogen. The underlying mechanisms, however, show considerable gender differences. Nevertheless, the many favorable responses to dehydroepiandrosterone by the brain and the periphery make this neurosteroid a promising substitute for estrogen in hormone therapy.


Hypothalamus hippocampus gonadal steroids neurosteroids synaptogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramon y Cajal S. Histologie du Systéme Nerveux de l’Homme et des Vertébrés. Paris: Maloine, 1911.Google Scholar
  2. 2.
    Pfaff DW. Morphological changes in the brains of adult male rats after neonatal castration. J Endocrinol 1966; 36:415–416.PubMedCrossRefGoogle Scholar
  3. 3.
    Dorner G, Staudt J. Structural changes in the preoptic anterior hypothalamic area of the male rat, following neonatal castration and androgen substitution. Neuroendocrinology 1968; 3:136–140.PubMedCrossRefGoogle Scholar
  4. 4.
    Raisman G, Field PM. Sexual dimorphism in the preoptic area of the rat. Science 1971; 173:731–733.PubMedCrossRefGoogle Scholar
  5. 5.
    Nottebohm F, Arnold AP. Sexual dimorphism in vocal control areas of the songbird brain. Science 1976; 194:211–213.PubMedCrossRefGoogle Scholar
  6. 6.
    Breedlove SM, Arnold AP. Hormonal control of a developing neuromuscular system. II. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci 1983; 3:424–432.PubMedGoogle Scholar
  7. 7.
    Greenough WT, Carter CS, Steerman C, et al. Sex differences in dentritic patterns in hamster preoptic area. Brain Res 1977; 126:63–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia-Segura LM, Baetens D, Naftolin F. Sex differences and maturational changes in arcuate nucleus neuronal plasma membrane organization. Brain Res 1985; 351:146–149.PubMedGoogle Scholar
  9. 9.
    Raisman G, Field PM. Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 1973; 54:1–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Matsumoto A, Arai Y. Sexual dimorphism in “wiring pattern” in the hypothalamic arcuate nucleus and its modification by neonatal hormonal environment. Brain Res 1980; 190:238–242.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumoto A, Arai Y. Effect of androgen on sexual differentiation of synaptic organization in the hypothalamic arcuate nucleus: an ontogenetic study. Neuroendocrinology 1981; 33:166–169.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsumoto A, Arai Y. Neuronal plasticity in the deafferented hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J Comp Neurol 1981; 197:197–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Perez J, Naftolin F, Garcia Segura LM. Sexual differentiation of synaptic connectivity and neuronal plasma membrane in the arcuate nucleus of the rat hypothalamus. Brain Res 1990; 527:116–122.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammer RP, Jr. The sexually dimorphic region of the preoptic area in rats contains denser opiate receptor binding sites in females. Brain Res 1984; 308:172–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Pozzo Miller LD, Aoki A. Stereological analysis of the hypothalamic ventromedial nucleus. II. Hormone-induced changes in the synaptogenic pattern. Brain Res Dev Brain Res 1991; 61:189–196.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnold AP, Breedlove SM. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav 1985; 19:469–498.PubMedCrossRefGoogle Scholar
  17. 17.
    Cardinali DP, Vacas MI. Mechanisms underlying hormone effects on pineal function: a model for the study of integrative neuroendocrine processes. J Endocrinol Invest 1978; 1:89–96.PubMedGoogle Scholar
  18. 18.
    Romano GJ, Krust A, Pfaff DW. Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study. Mol Endocrinol 1989; 3:1295–1300.PubMedCrossRefGoogle Scholar
  19. 19.
    DeVoogd TJ, Nottebohm F. Sex differences in dendritic morphology of a song control nucleus in the canary: a quantitative Golgi study. J Comp Neurol 1981; 196:309–316.PubMedCrossRefGoogle Scholar
  20. 20.
    Kurz EM, Sengelaub DR, Arnold AP. Androgens regulate the dendritic length of mammalian motoneurons in adulthood. Science 1986; 232:395–398.PubMedCrossRefGoogle Scholar
  21. 21.
    de Vries GJ, Buijs RM, Sluiter AA. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res 1984; 298:141–145.PubMedCrossRefGoogle Scholar
  22. 22.
    Commins D, Yahr P. Adult testosterone levels influence the morphology of a sexually dimorphic area in the Mongolian gerbil brain. J Comp Neurol 1984; 224:132–140.PubMedCrossRefGoogle Scholar
  23. 23.
    Theodosis DT, Poulain DA, Vincent JD. Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience 1981; 6:919–929.PubMedCrossRefGoogle Scholar
  24. 24.
    Hatton GI, Tweedle CD. Magnocellular neuropeptidergic neurons in hypothalamus: increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Brain Res Bull 1982; 8:197–204.PubMedCrossRefGoogle Scholar
  25. 25.
    Theodosis DT, Poulain DA. Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation. Neuroscience 1984; 11:183–193.PubMedCrossRefGoogle Scholar
  26. 26.
    Gies U, Theodosis DT. Synaptic plasticity in the rat supraoptic nucleus during lactation involves GABA innervation and oxytocin neurons: a quantitative immunocytochemical analysis. J Neurosci 1994; 14:2861–2869.PubMedGoogle Scholar
  27. 27.
    Calizo LH, Flanagan-Cato LM. Estrogen selectively regulates spine density within the dendritic arbor of rat ventromedial hypothalamic neurons. J Neurosci 2000; 20:1589–1596.PubMedGoogle Scholar
  28. 28.
    Langub MC, Jr., Maley BE, Watson RE, Jr. Estrous cycle-associated axosomatic synaptic plasticity upon estrogen receptive neurons in the rat preoptic area. Brain Res 1994; 641:303–310.PubMedCrossRefGoogle Scholar
  29. 29.
    Arai Y, Matsumoto A. Synapse formation of the hypothalamic arcuate nucleus during post-natal development in the female rat and its modification by neonatal estrogen treatment. Psychoneuroendocrinology 1978; 3:31–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Matsumoto A, Arai Y. Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell Tissue Res 1979; 198:427–433.PubMedCrossRefGoogle Scholar
  31. 31.
    Olmos G, Naftolin F, Perez J, et al. Synaptic remodeling in the rat arcuate nucleus during the estrous cycle. Neuroscience 1989; 32:663–667.PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia-Segura LM, Baetens D, Naftolin F. Synaptic remodelling in arcuate nucleus after injection of estradiol valerate in adult female rats. Brain Res 1986; 366:131–136.PubMedCrossRefGoogle Scholar
  33. 33.
    Naftolin F, Garcia-Segura LM, Keefe D, et al. Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus. Biol Reprod 1990; 42:21–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Parducz A, Perez J, Garcia-Segura LM. Estradiol induces plasticity of gabaergic synapses in the hypothalamus. Neuroscience 1993; 53:395–401.PubMedCrossRefGoogle Scholar
  35. 35.
    Parducz A, Hoyk Z, Kis Z, et al. Hormonal enhancement of neuronal firing is linked to structural remodelling of excitatory and inhibitory synapses. Eur J Neurosci 2002; 16:665–670.PubMedCrossRefGoogle Scholar
  36. 36.
    Yeoman RR, Jenkins AJ. Arcuate area of the female rat maintained in vitro exhibits increased afternoon electrical activity. Neuroendocrinology 1989; 49:144–149.PubMedCrossRefGoogle Scholar
  37. 37.
    Witkin JW, Ferin M, Popilskis SJ, et al. Effects of gonadal steroids on the ultrastructure of GnRH neurons in the rhesus monkey: synaptic input and glial apposition. Endocrinology 1991; 129:1083–1092.PubMedCrossRefGoogle Scholar
  38. 38.
    Garcia-Segura LM, Chowen JA, Parducz A, et al. Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol 1994; 44:279–307.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoyk Z, Parducz A, Theodosis DT. The highly sialylated isoform of the neural cell adhesion molecule is required for estradiol-induced morphological synaptic plasticity in the adult arcuate nucleus. Eur J Neurosci 2001; 13:649–656.PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia-Segura LM, Hernandez P, Olmos G, et al. Neuronal membrane remodelling during the oestrus cycle: a freeze-fracture study in the arcuate nucleus of the rat hypothalamus. J Neurocytol 1988; 17:377–383.PubMedCrossRefGoogle Scholar
  41. 41.
    Parducz A, Szilagyi T, Hoyk S, et al. Neuroplastic changes in the hypothalamic arcuate nucleus: the estradiol effect is accompanied by increased exoendocytotic activity of neuronal membranes. Cell Mol Neurobiol 1996; 16:259–269.PubMedCrossRefGoogle Scholar
  42. 42.
    Kis Z, Horvath S, Hoyk Z, et al. Estrogen effects on arcuate neurons in rat. An in situ electrophysiological study. Neuroreport 1999; 10:3649–3652.PubMedCrossRefGoogle Scholar
  43. 43.
    Hajszan T, MacLusky NJ, Leranth C. Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology 2004; 145:1042–1045.PubMedCrossRefGoogle Scholar
  44. 44.
    MacLusky NJ, Hajszan T, Leranth C. Effects of dehydroepiandrosterone and flutamide on hippocampal CA1 spine synapse density in male and female rats: implications for the role of androgens in maintenance of hippocampal structure. Endocrinology 2004; 145:4154–4161.PubMedCrossRefGoogle Scholar
  45. 45.
    Dohanich GP. Gonadal steroids, learning and memory. In: Pfaff DW, Arnold AP, Etgen AM, et al. (eds). Hormones, brain and behavior. San Diego, CA: Academic, 2002:265–327.CrossRefGoogle Scholar
  46. 46.
    Yaffe K, Lui LY, Grady D, et al. Cognitive decline in women in relation to non-protein-bound oestradiol concentrations. Lancet 2000; 356:708–712.PubMedCrossRefGoogle Scholar
  47. 47.
    Yaffe K, Lui LY, Zmuda J, et al. Sex hormones and cognitive function in older men. J Am Geriatr Soc 2002; 50:707–712.PubMedCrossRefGoogle Scholar
  48. 48.
    McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002; 12:205–210.PubMedCrossRefGoogle Scholar
  49. 49.
    Mumby DG, Gaskin S, Glenn MJ, et al. Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 2002; 9:49–57.PubMedCrossRefGoogle Scholar
  50. 50.
    Gould E, Woolley CS, Frankfurt M, et al. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10:1286–1291.PubMedGoogle Scholar
  51. 51.
    Woolley CS, Gould E, Frankfurt M, et al. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 1990; 10:4035–4039.PubMedGoogle Scholar
  52. 52.
    Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992; 12:2549–2554.PubMedGoogle Scholar
  53. 53.
    Leranth C, Shanabrough M, Horvath TL. Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 2000; 101:349–356.PubMedCrossRefGoogle Scholar
  54. 54.
    Leranth C, Shanabrough M, Redmond DE, Jr. Gonadal hormones are responsible for maintaining the integrity of spine synapses in the CA1 hippocampal subfield of female nonhuman primates. J Comp Neurol 2002; 447:34–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Hao J, Janssen WG, Tang Y, et al. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J Comp Neurol 2003; 465:540–550.PubMedCrossRefGoogle Scholar
  56. 56.
    Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci 2003; 23:1588–1592.PubMedGoogle Scholar
  57. 57.
    Sandstrom NJ, Williams CL. Spatial memory retention is enhanced by acute and continuous estradiol replacement. Horm Behav 2004; 45:128–135.PubMedCrossRefGoogle Scholar
  58. 58.
    Luine VN, Jacome LF, MacLusky NJ. Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology 2003; 144:2836–2844.PubMedCrossRefGoogle Scholar
  59. 59.
    MacLusky NJ, Luine VN, Hajszan T, et al. The 17alpha and 17beta isomers of estradiol both induce rapid spine synapse formation in the CA1 hippocampal subfield of ovariectomized female rats. Endocrinology 2005; 146:287–293.PubMedCrossRefGoogle Scholar
  60. 60.
    McEwen BS, Coirini H, Schumacher M. Steroid effects on neuronal activity: when is the genome involved? Ciba Found Symp 1990; 153:3–12.PubMedGoogle Scholar
  61. 61.
    Bi R, Foy MR, Vouimba RM, et al. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc Natl Acad Sci USA 2001; 98:13391–13395.PubMedCrossRefGoogle Scholar
  62. 62.
    Znamensky V, Akama KT, McEwen BS, et al. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites. J Neurosci 2003; 23:2340–2347.PubMedGoogle Scholar
  63. 63.
    Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138:863–870.PubMedCrossRefGoogle Scholar
  64. 64.
    Wade CB, Robinson S, Shapiro RA, et al. Estrogen receptor (ER) alpha and ERbeta exhibit unique pharmacologic properties when coupled to activation of the mitogen-activated protein kinase pathway. Endocrinology 2001; 142:2336–2342.PubMedCrossRefGoogle Scholar
  65. 65.
    Milner TA, McEwen BS, Hayashi S, et al. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol 2001; 429:355–371.PubMedCrossRefGoogle Scholar
  66. 66.
    Towart LA, Alves SE, Znamensky V, et al. Subcellular relationships between cholinergic terminals and estrogen receptor-alpha in the dorsal hippocampus. J Comp Neurol 2003; 463:390–401.PubMedCrossRefGoogle Scholar
  67. 67.
    Nishio M, Kuroki Y, Watanabe Y. Subcellular localization of estrogen receptor beta in mouse hippocampus. Neurosci Lett 2004; 355:109–112.PubMedCrossRefGoogle Scholar
  68. 68.
    Labrie F, Luu-The V, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev 2003; 24:152–182.PubMedCrossRefGoogle Scholar
  69. 69.
    Vallee M, Mayo W, Le Moal M. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Brain Res Rev 2001; 37:301–312.PubMedCrossRefGoogle Scholar
  70. 70.
    Huppert FA, Van Niekerk JK. Dehydroepiandrosterone (DHEA) supplementation for cognitive function. Cochrane Database Syst Rev 2001; CD000304.Google Scholar
  71. 71.
    Kasai H, Matsuzaki M, Noguchi J, et al. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003; 26:360–368.PubMedCrossRefGoogle Scholar
  72. 72.
    Beck SG, Handa RJ. Dehydroepiandrosterone (DHEA): a misunderstood adrenal hormone and spine-tingling neurosteroid? Endocrinology 2004; 145:1039–1041.PubMedCrossRefGoogle Scholar
  73. 73.
    Leranth C, Hajszan T, MacLusky NJ. Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci 2004; 24:495–499.PubMedCrossRefGoogle Scholar
  74. 74.
    Labrie C, Simard J, Zhao HF, et al. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology 1989; 124:2745–2754.PubMedCrossRefGoogle Scholar
  75. 75.
    Wright AS, Thomas LN, Douglas RC, et al. Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat. J Clin Invest 1996; 98:2558–2563.PubMedCrossRefGoogle Scholar
  76. 76.
    Almeida OP. Sex playing with the mind. Effects of oestrogen and testosterone on mood and cognition. Arq Neuropsiquiatr 1999; 57:701–706.PubMedGoogle Scholar
  77. 77.
    Delhez M, Hansenne M, Legros JJ. Testosterone and depression in men aged over 50 years. Andropause and psychopathology: minimal systemic work-up. Ann Endocrinol (Paris) 2003; 64:162–169.Google Scholar
  78. 78.
    Hajszan T, MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 2005; 21:1299–1303.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V 2008

Authors and Affiliations

  • Tibor Hajszan
    • 1
  • Zsofia Hoyk
    • 1
  • Luis Miguel Garcia-Segura
    • 2
  • Arpad Parducz
    • 1
  1. 1.Institute of BiophysicsBiological Research CenterHungary
  2. 2.Instituto Cajal, C.S.I.CSpain

Personalised recommendations