Skip to main content

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 1))

Abstract

In recent years, functionalization of carbon nanotubes (CNTs) with biomolecules such as nucleotide acids, proteins, and artificial polymers have emerged as a new exciting field. Theoretical and experimental studies of structure and function of bio-inspired CNT composites have made great advances. The importance of nucleic acids, proteins, and synthesized polymers to the fundamental developments in CNT-based bio-nano-composites or devices has been recognized. In particular, biomechanics, biochemistry, thermodynamics, electronic, optical and magnetic properties, and biocompatibility and toxicology of the bio-inspired CNT composites have become a new interdisciplinary frontier in life science and nanomaterial science. Bio-inspired CNT composites have been actively exploited potentials in applications such as gene/drug delivery system, tissue engineering scaffolds, hydrogen storage, molecular imaging, biocatalyst systems, biosensors, and antifouling films. Here we review the main advances in this field over the past few years, explore their application prospects, and discuss the issues, approaches, and challenges, with the aim of improving and developing CNT-based bio-nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ago JERH, Shaffer MSP, Ginger DS, Windle AH, Friend RH (2000). Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Phys. Rev. B 61: 2286-2290.

    Google Scholar 

  • Ago G, Guo Z, Carroll DL, Sun YP (2000). Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122: 5879-5880.

    Google Scholar 

  • Alivisato P (2004). The use of nanocrystals in biological detection. Nature Biotechnol. 22: 47-52.

    Google Scholar 

  • Ajayan PM, Stephen O, Colliex C, Trauth D (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212-1214.

    Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2003). Nanocomposite science and technology. Wiley-VCH/ Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Google Scholar 

  • Andriotis AN, Menon M, Chernozatonskii L (2003). Nonlinear resistance dependence on length in single-wall carbon nanotubes. Nano Lett. 3: 131-134.

    Google Scholar 

  • Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007). Polymer-nanotube -enzyme composites as active antifouling films. Small 3: 50-53.

    Google Scholar 

  • Bahr JL, Tour JM (2002). Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12: 1952-1958.

    Google Scholar 

  • Barnard AS (2006). Nanohazards: knowledge is our first defence. Nature Mater. 5: 245-248.

    Google Scholar 

  • Bashir R (2004). BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev. 56: 1565-1586.

    Google Scholar 

  • Batalia M, Protozanova E, Macgregor R, Erie D (2002). Self-assembly of frayed wires and frayed-wire networks: nanoconstruction with multistranded DNA. Nano Lett. 2: 269-274.

    Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 80: 2767-2769.

    Google Scholar 

  • Breuer O, Sundararaj U (2004). Big returns from small fibers: a review of polymer/carbon nano-tube composites. Polymer Composites 25: 630-645.

    Google Scholar 

  • Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81: 5123-5125.

    Google Scholar 

  • Cai H, Bashar MT, Picot JJC (2004). Thermal and mechanical anisotropy in compression molded carbon fiber/resin composites. Polymer Composites 26: 684-688.

    Google Scholar 

  • Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007). Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon 45: 2037-2046.

    Google Scholar 

  • Cao L, Chen HZ, Wang M, Sun JZ (2002). Photoconductivity study of modified carbon nanotube/ oxotitanium phthalocyanine composites. J. Phys. Chem. B 6: 8971-8975.

    Google Scholar 

  • Carrero-Sánchez JC, Eliás AL, Mancilla R, Arrellín G, Terrones H, Laclette JP, Terrones M (2006). Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6: 1609-1616.

    Google Scholar 

  • Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G (2007).Spectroscopic analysis confirms the interaction s between single-walled carbon nanotubes and various dyes com-monly used to assess cytotoxicity. Carbon (in press).

    Google Scholar 

  • Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G (2007). Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon 45: 34-40.

    Google Scholar 

  • Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004).

    Google Scholar 

  • Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4: 2233-2236.

    Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai HJ (2003). Noncovalent functionalization of carbon nanotubes for highly specific electronic bio-sensors. Proc. Natl. Acad. Sci. USA. 100: 4984-4989.

    Google Scholar 

  • Chaudhary S, Kim JH, Ozkan M (2006). Controlled electron-beam-induced large-scale alignment of carbon nanotubes at metal electrodes. J. Nanoelectron. Optoelectron. 1: 211-214.

    Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001). Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123: 3838-3839.

    Google Scholar 

  • Chen YC, Raravikar NR, Schadler LS, Ajayan PM, Zhao YP, Lu TM, Wang GC, Zhang XC (2002). Ultrafast optical switching properties of single-wall carbon nanotube polymer compos-ites at 1.55 µm. Appl. Phys. Lett. 81: 975-977.

    Google Scholar 

  • Chen J, Tao ZL, Li SL, Fan XB, Chou S-L (2002). Synthesis of TiSe2 Nanotubes/Nanowires. Adv. Mater. 14: 1379-1382.

    Google Scholar 

  • Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003). Enhancement of thermal and electrical properties of carbon nanotube polymer com-posites by magnetic field processing. J. Appl. Phys. 94: 6034-6039.

    Google Scholar 

  • Cochet M, Maser WK, Benitor A, Callejas A, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001). Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16: 1450-1451.

    Google Scholar 

  • Cui D, Tian F, Coyer SR, Wang J, Pan B, Gao F, He R and Zhang Y (2007). Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J. Nanosci. Nanotech. 7: 1639-1641.

    Google Scholar 

  • Cui D, Ozkan CS, Ravindran S, Yong K, Gao H (2004a). Encapsulation of Pt-labelled DNA mol-ecules inside carbon nanotubes. MCB 1: 113-121.

    Google Scholar 

  • Cui D, Tian F, Kong Y, Titushikin I, Gao H (2004b). Effects of single-walled carbon nanotubes on Polymerase Chain Reaction (2004). Nanotechnology 15: 154-157.

    Google Scholar 

  • Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005). Effect of single-walled carbon nanotubes. Toxicol. Lett. 155: 73-85.

    Google Scholar 

  • Cui D (2007). Advances and prospects of biomolecules functionalized carbon nanotubes. J. Nanosci Nanotech 7: 1298-1314.

    Google Scholar 

  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro 21: 438-448.

    Google Scholar 

  • Deng JG, Ding XB, Zhang WC, Peng YX, Wang JH, Long XP, Li P, Chan AS (2002). Carbon nanotube-polyaniline hybrid materials. European Polymer Journal 38: 2497-2501.

    Google Scholar 

  • Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997). Storage of hydro-gen in single-walled carbon nanotubes. Nature 386: 377-379.

    Google Scholar 

  • Dintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4: 435-446.

    Google Scholar 

  • Dresselhaus MS, Dresslhous G, Avouris P (2000). In carbon nanotubes: synthesis, structure, prop-erties and application, Chap. 13. Springer, Berlin, Germany.

    Google Scholar 

  • Dresselhaus MS, Dresslhous G, Eklund PC (1996). Science of fullerenes and carbon nanotubes. Academic Press, San Diego, USA.

    Google Scholar 

  • Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003). Well-aligned polyaniline/car-bon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41: 1551-1557.

    Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002). Cellular locali-zation of a water-soluble fullerence derivate. Biochem. Biophys. Res. Commun. 294: 116-119.

    Google Scholar 

  • Foster J, Singamaneni S, Kattumenu R, Bliznyuk V (2005). Dispersion and phase separation of carbon nanotubes in ultrathin polymer films. J. Colloid and Interface Science 287: 167-172.

    Google Scholar 

  • Fournet P, Coleman JN, Lahr B, Drury A, Blau WJ, O’Brien DF, Hörhold HH (2001). Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90: 969-975.

    Google Scholar 

  • Gao JB, Yu AP, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004). Large-scale fabri-cation of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126: 16698-16699.

    Google Scholar 

  • Gao H, Kong Y, Cui D, Ozkan CS (2003). Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano. Lett. 3: 471-473.

    Google Scholar 

  • Gao H, Shi W, Fraund LB (2005). Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA. 102: 5469-5474.

    Google Scholar 

  • Georgakilas V, Pellarini F, Prato M, Guldi DM, Melle-Franco M, Zerbetto F (2002). Supramolecular self-assembled fullerene nanostructures. Proc. Natl. Acad. Sci. USA. 99: 5075-5080.

    Google Scholar 

  • Goho A (2004). Tiny trouble: nanoscale materials damage fish brains. Science News Online 165: 211.

    Google Scholar 

  • Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000). Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12: 1049-1052.

    Google Scholar 

  • Goh HW, Goh SH, Xu GQ, Lee KY, Yang GY, Lee YW, Zhang WD (2003). Optical limiting properties of double-C60-end-capped poly(ethylene oxide), double-C60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. J. Phys. Chem. B 107: 6056-6062.

    Google Scholar 

  • Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004). Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16: 150-154.

    Google Scholar 

  • Guo ZJ, Sadler PJ, Tsang SC (1998). Immobilization and visualization of DNA and proteins on carbon nnaotubes. Adv. Mater. 10: 701-703.

    Google Scholar 

  • Hafner JH, Cheung CL, Woolley AT, Lieber CM (2001). Structural and functional imaging with carbon nanotube AFM probes. Progress in Biophysics & Molecular Biology 77: 73-110.

    Google Scholar 

  • Han M, Gao X, Su JZ, Nie SM (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19: 631-635.

    Google Scholar 

  • Hong S, Leroueil PR, Janus EK, et al. (2006). Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17: 728-34.

    Google Scholar 

  • Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE (2002). Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physcis A-Materials Science & Processing 74: 339-343.

    Google Scholar 

  • Hoet PH, Bruske-Hohlfeld I, Salata OV (2004). Nanoparticles - known and unknown health risks. J. Nanobiotechnol. 2: 12

    Google Scholar 

  • Hou PX, Xu ST, Yang QH, Liu C, Cheng HM (2003). Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41: 2471-2476.

    Google Scholar 

  • Huang XY, Li L, Qian HF, Dong CQ, Ren CJ (2006). A resonance energy transfer between chemi-luminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Ed. 45: 5140-5143.

    Google Scholar 

  • Hu H, Ni YC, Mandal SK, Montana V, Zhao N, Haddon RC, Parpura V (2005). Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for Neuronal Growth. J. Phys. Chem. B 109: 4285-4289.

    Google Scholar 

  • Huynh U, Dittmer J, Alivisators A (2002). Hybrid nanorod polymer solar cells. Science 295: 2425-2427.

    Google Scholar 

  • Ikkala O, Brinke G (2002). Functional materials based on self-assembly of polymeric supramole-cules. Science 295: 2407-2413.

    Google Scholar 

  • Iijima S (1991). Helical microtubules of graphitic carbon. Nature 354: 56-58.

    Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003). FRET imaging. Nature Biotechnol. 21: 1387-1395.

    Google Scholar 

  • Joshi PP, Merchant SA, Wang YD, Schmidtke DW (2005). MEMS sensor material based on polypyrrole -carbon nanotube nanocomposite : film deposition and characterization . J . Micromech. Microengin. 5: 2019-2027.

    Google Scholar 

  • Kam NWS, Liu Z, Dai H (2006). Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 45: 577-581.

    Google Scholar 

  • Kam NWS, O’Connell M, Wisdom JA, Dai H (2005). Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer destrction. Proc. Natl. Acad. Sci. USA. 102: 11600-11605.

    Google Scholar 

  • Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004). Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 22: 211-213.

    Google Scholar 

  • Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002). Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23: 761-765.

    Google Scholar 

  • Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Mortalin TK (2003). Imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Research 13: 503-507.

    Google Scholar 

  • Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003). DNA-templated carbon nanotube field-effect transistor. Science 302: 1380-1382.

    Google Scholar 

  • Kilbride BE, Coleman JN, Fournet P, Cadek A, Hutzler S, Roth S, Blau WJ (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92: 4024-4030.

    Google Scholar 

  • Kim J, Grate JW (2003). Single-enzyme nanoparticles armored by a nanometer-scale organic/ inorganic network. Nano Lett. 3: 1219-1222.

    Google Scholar 

  • Kim JY, Kim M, Kim H, Joo J, Choi JH (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21: 147-151.

    Google Scholar 

  • Kong H, Gao C, Yan DY (2004). Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37: 4022-4030.

    Google Scholar 

  • Kong Y, Cui D, Ozkan CS, Gao H (2003). American Materials Research Society Symposium Proceeding-Biomicroelectrome Chanical Systems (BIOMEMS) 773: 111-116

    Google Scholar 

  • Kuempel ED, Tran CL, Castranova V, Bailer AJ (2006). Lung dosimetry and risk assessment of nano-particles: evaluating and extending current models in rats and humans. Inhal. Toxicol. 18: 717-24.

    Google Scholar 

  • Kymakis E, Amaratunga GAJ (2002a). Polymer-nanotube composites: burying nanotubes

    Google Scholar 

  • improves their field emission properties. Appl. Phys. Lett. 80: 1435-1437.

    Google Scholar 

  • Kymakis E and Amaratunga GAJ (2002b). Single-wall carbon nanotube/conjugated polymer pho-tovoltaic devices. Appl. Phys. Lett. 80: 112-114.

    Google Scholar 

  • Kymakis E, Amaratunga GAJ (2003). Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Solar Ener. Mater. Solar Cells 80: 465-472.

    Google Scholar 

  • Kymakis E, Alexandrou I, Amaratunga GAJ (2003). High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93: 1764-1768.

    Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004). Pulmonary toxicity of single-wall carbon nnaotubes in mice 7 and 90 days after intracheal instillation. Toxicol. Sci. 77: 126-134.

    Google Scholar 

  • Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005). CdSe quantum dot-sin-gle wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater And Solar Cells 87: 733-746.

    Google Scholar 

  • Lee JW, Kim BK, Kim H, Han SC, Shin WS, Jin SH (2006). Convergent synthesis of symmetrical and unsymmetrical PAMAM dendrimers. Macromolecules 39: 2418-2422.

    Google Scholar 

  • Lefebvre J, Fraser JM, Homma Y, Finnie P (2004). Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes. Appl. Phys. A 78: 1107-1110.

    Google Scholar 

  • Levitsky IA, Kanelos PT, Woodbury DS, Euler WB (2006). Photoactuation from a carbon nano-tube-nafion bilayer composite. J. Phys. Chem. B. 110: 9421-9425.

    Google Scholar 

  • Li HJ, Wang XB, Song YL, Liu YQ, Li QS, Jiang L, Zhu BD (2001). Super-“amphiphobic” aligned carbon nanotube films. Angew. Chem. Int. Ed. 40: 1743-1746.

    Google Scholar 

  • Liang Z, Susha AS, Yu A, Caruso F (2002). Nanotubes prepared by layer-by-layer coating of porous membrane templates. Adv. Mater. 14: 1849-1853.

    Google Scholar 

  • Liu YJ, Nishimura N, Otani Y (2005). Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34: 173-187.

    Google Scholar 

  • Lin T, Bajpai V, Ji T, Dai LM (2003). Chemistry of carbon nanotubes. Australian J. Chem. 56: 635-651.

    Google Scholar 

  • Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996). Large-scale synthesis of aligned carbon nanotubes. Science 274: 1701-1703.

    Google Scholar 

  • Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C, Hu J (2005).  Nanoparticle-PCR: Nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 44: 5100-5103.

    CAS  Google Scholar 

  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Riqhi M, Spalluto G, Prato M, Ballerini  (2005). Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5: 1107-1110.

    CAS  Google Scholar 

  • Lourie O, Cox DM, Wagner HD (1998). Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81: 1638-1641.

    Google Scholar 

  • Lu SX, Panchapakesan B (2005). Optically driven nanotube actuators. Nanotechnology 16: 2548-2554.

    Google Scholar 

  • Luo XL, Xu JJ, Wang JL, Chen HY (2005). Electrochemically deposited nanocomposite of chi-tosan and carbon nanotubes for biosensor application. Chem. Commun. 16: 2169-2171.

    Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2005). Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med Chem. 48: 5892-5899.

    Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006). PAMAM dendrimer-based multi-functional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7: 572-579.

    CAS  Google Scholar 

  • Merkoci A, Pumera M, Llopis X, Perez B, Valle M del, Alegret S (2005). New materials for elec-trochemical sensing VI: Carbon nanotubes. Trac-Trends in Anal. Chem. 24: 826-838.

    CAS  Google Scholar 

  • Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Suerlund H, Martin CR (2002). Smart nano-tubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124: 11864-11865.

    Google Scholar 

  • Martin CR, Kohli P (2002). The emerging field of nanotube biotechnology. Nature Rev. Drug Discov. 2: 29-37.

    Google Scholar 

  • Maslov S, Sneppen K (2002). Specificity and stability in topology of protein networks. Science 296: 910-913.

    Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004). Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled car-bon nanotube material. J. Toxicol. Environ. Health A 67: 87-107.

    Google Scholar 

  • Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45: 739-748.

    Google Scholar 

  • Nalwa HS (2000). Handbook of Nanostructured Materials and Nanotechnology, vol. 5, Academic Press, New York.

    Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16: 437-445.

    Google Scholar 

  • Odom TW, Huang JL, Lieber CM (2002). Single-walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N Y Acad. Sci. 960: 203-15.

    Article  Google Scholar 

  • Otten CJ, Lourie OR, Yu MF, Cowley JM, Dyer MJ, Ruoff RS, Buhro WE (2002). Crystalline boron nanowires. J. Am. Chem. Soc. 124: 4564-4565.

    Google Scholar 

  • Pan B, Cui D, Xu P, Huang T, Li Q, He R, Gao F (2007). Cellular uptake enhancement of polyamidoam-ine dendrimer modified single walled carbon nanotubes. J. Biomed. Pharmaceut. Eng. 1: 1-4.

    Google Scholar 

  • Pan B, Cui D, Gao F, He R (2006). Growth of multi-amine terminated poly(amidoamine)dendrim ers on the surface of carbon nanotubes. Nanotechnology 17: 2483-2489.

    Google Scholar 

  • Pan B, Cui D, He R, Gao F, Zhang Y (2006). Covalent attachment of quantum dot on carbon nano-tubes. Chem. Phys. Lett. 417: 419-424.

    Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan CS, Gao F, et al. (2007). Dendrimer-modified magnetic nanoparti-cles enhance efficiency of gene delivery system. Cancer Res. 67: 8156-8163.

    Google Scholar 

  • Panhuis MIH, Sainz R, Innis PC, Kane-Maguire LAP, Benito AM, Martinez MT, Moulton SE, Wallace GG, Maser WK (2005).Optically active polymer carbon nanotube composite. J. Phys. Chem. B 109: 22725-22729.

    Google Scholar 

  • Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003). Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125: 6160-6164.

    Google Scholar 

  • Pantarotto D, Briand JP, Prato M, Bianco A (2004a). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16-17.

    Google Scholar 

  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004b). Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43: 5242-5246.

    Google Scholar 

  • Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TL (2002). Dispersion of single wall carbon nanotubes by in situ polymeri-zation under sonication. Chem. Phys. Lett. 364: 303-308.

    Google Scholar 

  • Peng F, Fu X, Yu H, Wang H (2007). Preparation of carbon nanotube-supported Fe2O3 catalysts and their catalytic activities for ethylbenzene dehydrogenation. New Carbon Mater. 22: 213-217.

    Google Scholar 

  • Pengfei QF, Vermesh Q, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003). Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3: 347-351.

    Google Scholar 

  • Raloff J (2005). Nano hazards: exposure to minute particles harms lungs, circulatory system. Sci. News Online 167:179.

    Google Scholar 

  • Rege K, Raravikar NR, Kim D-Y, Schadler LS, Ajayan PM, Dordick JS (2004). Enzyme-polymer-single walled carbon nanotube composites as biocatalystic films. Nano Lett. 3: 829-832.

    Google Scholar 

  • Ren Y, Fu YQ, Liao K, Li F, Cheng HM (2004). Fatigue failure mechanisms of single-walled car-bon nanotube ropes embedded in epoxy. Appl. Phys. Lett. 84: 2811-2813.

    Google Scholar 

  • Rouse JH, Lillehei PT, Sanderson J, Siochi EJ (2004). Polymer/Single-walled carbon nanotube films assembled via donor-acceptor interactions and their use as scaffolds for silica deposition. Chem. Mat. 16: 3904-3910.

    Google Scholar 

  • Salvetat JP, Bhattacharyya S, Pipes RB (2006). Progress on mechanics of carbon nanotubes and derived materials. J. Nanosci. Nanotechnol. 6: 1857-1882.

    Google Scholar 

  • Salem AK, Searson PC, Leong KW (2003). Multifunctional nanorods for gene delivery. Nat. Mater. 2: 668-671.

    Google Scholar 

  • Seeman NC (2005). From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30: 119-125.

    Google Scholar 

  • Shi D, Guo Y, Dong Z, Lian J, Wang W, Liu G, Wang L, Ewing RC (2006). Luminescent carbon nanotubes by surface functionalization. Adv. Mater. 18: 189-193.

    Google Scholar 

  • Shi D, Guo Y, Dong Z, Lian J, Wang W, Liu G, Wang L, Ewing RC (2007). Quantum-dot-acti-vated luminescent carbon nanotubes via a nanoscale surface functionalization for in vivo imaging. Adv. Mater 19(23): 4033-4037.

    Google Scholar 

  • Shim M, Kam NMS, Chen RJ, Li R, Dai H (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2: 285-288.

    Google Scholar 

  • Shino A, Fujioka K, Manabe N, Yamaya S, Goto Y, Yasuhara M, Yamamoto K (2005).

    Google Scholar 

  • Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol. Immunol. 49: 461-470.

    Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909-1926.

    Google Scholar 

  • Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005). Binding and condensation of plasmid DNA onto functional-ized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127: 4388-4396.

    Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA. 103: 3357-3362.

    Google Scholar 

  • Snow ES, Perkins FK (2005).Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5: 2414-2417.

    Google Scholar 

  • Satapathy BK, Weidisch R, Potschke P, Janke A (2005). Crack toughness behaviour of multi-walled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromol. Rapid Commun. 26: 1246-1252.

    Google Scholar 

  • Sato Y, Yokoyam A, Kenichiro S, Akimoto Y, Shinichi Ogino, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005). Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1: 176-182.

    CAS  Google Scholar 

  • Stone V, Donaldson K (2006). Signs of stress. Nature Nanotechnology 1: 23-24.

    Google Scholar 

  • Sun TL, Wang GJ, Liu H, Feng L, Jiang L, Zhu DB (2003). Control over the wett-ability of an aligned carbon nanotube Film. J. Am. Chem. Soc. 125: 14996-14997.

    Google Scholar 

  • Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004). Nanofibrous membranes prepared by multi-walled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37: 9899-9902.

    Google Scholar 

  • Tang CY, Xie XL, Wu XC, Li RK, Mai YW (2002). Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane. J. Mater. Sci. Mater. Med. 13: 1065-1069.

    Google Scholar 

  • Tang BZ, Xu HY (1999). Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32: 2569-2576.

    Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kabayashi H (2006). Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20: 1202-1212.

    Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM (1996). Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381: 678-681.

    Google Scholar 

  • Tulevski GS, Hannon J, Afzali A, Chen Z, Avouris P, Kagan CR (2007). Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Am. Chem. Soc. 129: 11964-11968.

    Google Scholar 

  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006). Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5: 797-801.

    Google Scholar 

  • Valter B, Ram MK, Nicolini C (2002).Thermal desorption high-resolution mass spectrometry of mixed self-assembled monolayers on gold. Langmuir. 18: 1535-1541.

    Google Scholar 

  • Valentini L, Kenny JM (2005). Novel approaches to developing carbon nanotube-based polymer composites: fundamental studies and nanotech applications. Polymer 46: 6715-6718.

    Google Scholar 

  • Velasco-Santos C, Martý’nez-Herna’ndez AL, Fisher FT, Ruoff R, Castanío VM (2003a).

    Google Scholar 

  • Dynamical mechanical and thermal analysis of carbon nanotube-methyl methacrylate nano-composites. J. Phys. D-Applied Phys. 36: 1423-1428.

    Google Scholar 

  • Velasco-Santos C, Martý’nez-Herna’ndez AL, Fisher FT, Ruoff R, Castano V M (2003b).

    Google Scholar 

  • Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15: 4470-4475.

    Google Scholar 

  • Vinuesa C Goodnow C (2002). Immunology: DNA drives autoimmunity. Nature 416: 595.

    Google Scholar 

  • Wang H, Christopherson GT, Xu ZY, Porcar L, Ho DL, Fry D, Hobbie EK (2005). Shear-SANS study of single-walled carbon nanotube suspensions.Chem. Phys. Lett. 416: 182-186.

    Google Scholar 

  • Wang P (2006). Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17: 574-579

    Google Scholar 

  • Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jaqota A (2003). Peptides with selective affinity for carbon nano-tubes. Nature Mater. 2: 196-200.

    Google Scholar 

  • Weiss N, Kind H, Stockli T, Forro L, Kern K, Chatelain A (2001). Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 13: 184-188.

    Google Scholar 

  • Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003). Physical interactions at carbon nano-tube-polymer interface. Polymer 44: 7757-7764.

    Google Scholar 

  • Woo HS, Czerw R, Webster S, Carroll DL, Ballato J, Strevens AE, O’Brien D, Blau WJ (2000). Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 77: 1393-1395.

    Google Scholar 

  • Xia H, Cheng D, Xiao C, Chan HS (2006). Controlled synthesis of Y-junction polyaniline nano-rods and nanotubes using in situ self-assembly of magnetic nanoparticles. J. Nanosci. Nanotechnol. 6: 3950-3954.

    Google Scholar 

  • Xiao T, Fang N, Chan V, Liao K (2004). A kinetic model for time-dependent fracture of carbon nanotubes. Nano Lett. 4: 1139-1142.

    Google Scholar 

  • Yang YL, Gupta MC (2005). Novel carbon nanotube-polystyrene foam composites for electro-magnetic interference shielding. Nano Lett. 5: 2131-2134.

    Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003).DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882-1884.

    Google Scholar 

  • Yan H, Zhang X, Shen Z, Seeman C (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62-65.

    Google Scholar 

  • Yim T-J, Liu J, Lu Y, Kane RS, Dordick JS (2005). Highly active and stable DNA zyme -carbon nnaotube hybrids. J. Am. Chem. Soc. 127: 12200-12201.

    Google Scholar 

  • Yoo E, Habe T, Nakamura J (2005). Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials. Sci. Technol. Adv. Mater. 6: 615-619.

    Google Scholar 

  • Yoshida Y, Okano M, Wang S, Kobayashi M, Kawasumi M, Hagiwara H, Mitsumata M (1995). Hemodynamic-force-induced difference of interendothelial junctional complexes. Ann. N Y. Acad. Sci. 748: 104-120.

    Article  Google Scholar 

  • Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000). Strength and breaking mecha-nism of multiwalled carbon nanotubes under tensile load. Science 287: 637-640.

    Google Scholar 

  • Zhao B, Hu H, Yu AP, Perea D, Haddon RC (2005). Synthesis and characterization of water solu-ble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc. 127: 8197-8203.

    Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003). DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2: 338-342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Cui, D. (2008). Biomolecules Functionalized Carbon Nanotubes and Their Applications. In: Cataldo, F., Da Ros, T. (eds) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Carbon Materials: Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6845-4_9

Download citation

Publish with us

Policies and ethics