Biomolecules Functionalized Carbon Nanotubes and Their Applications

  • Daxiang Cui
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


In recent years, functionalization of carbon nanotubes (CNTs) with biomolecules such as nucleotide acids, proteins, and artificial polymers have emerged as a new exciting field. Theoretical and experimental studies of structure and function of bio-inspired CNT composites have made great advances. The importance of nucleic acids, proteins, and synthesized polymers to the fundamental developments in CNT-based bio-nano-composites or devices has been recognized. In particular, biomechanics, biochemistry, thermodynamics, electronic, optical and magnetic properties, and biocompatibility and toxicology of the bio-inspired CNT composites have become a new interdisciplinary frontier in life science and nanomaterial science. Bio-inspired CNT composites have been actively exploited potentials in applications such as gene/drug delivery system, tissue engineering scaffolds, hydrogen storage, molecular imaging, biocatalyst systems, biosensors, and antifouling films. Here we review the main advances in this field over the past few years, explore their application prospects, and discuss the issues, approaches, and challenges, with the aim of improving and developing CNT-based bio-nanotechnology.


Carbon nanotubes biomolecules nanocomposites functionalization applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ago JERH, Shaffer MSP, Ginger DS, Windle AH, Friend RH (2000). Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Phys. Rev. B 61: 2286-2290. Google Scholar
  2. Ago G, Guo Z, Carroll DL, Sun YP (2000). Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122: 5879-5880. Google Scholar
  3. Alivisato P (2004). The use of nanocrystals in biological detection. Nature Biotechnol. 22: 47-52. Google Scholar
  4. Ajayan PM, Stephen O, Colliex C, Trauth D (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212-1214. Google Scholar
  5. Ajayan PM, Schadler LS, Braun PV (2003). Nanocomposite science and technology. Wiley-VCH/ Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
  6. Andriotis AN, Menon M, Chernozatonskii L (2003). Nonlinear resistance dependence on length in single-wall carbon nanotubes. Nano Lett. 3: 131-134. Google Scholar
  7. Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007). Polymer-nanotube -enzyme composites as active antifouling films. Small 3: 50-53. Google Scholar
  8. Bahr JL, Tour JM (2002). Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12: 1952-1958. Google Scholar
  9. Barnard AS (2006). Nanohazards: knowledge is our first defence. Nature Mater. 5: 245-248. Google Scholar
  10. Bashir R (2004). BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev. 56: 1565-1586. Google Scholar
  11. Batalia M, Protozanova E, Macgregor R, Erie D (2002). Self-assembly of frayed wires and frayed-wire networks: nanoconstruction with multistranded DNA. Nano Lett. 2: 269-274.Google Scholar
  12. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 80: 2767-2769. Google Scholar
  13. Breuer O, Sundararaj U (2004). Big returns from small fibers: a review of polymer/carbon nano-tube composites. Polymer Composites 25: 630-645. Google Scholar
  14. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81: 5123-5125. Google Scholar
  15. Cai H, Bashar MT, Picot JJC (2004). Thermal and mechanical anisotropy in compression molded carbon fiber/resin composites. Polymer Composites 26: 684-688. Google Scholar
  16. Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007). Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon 45: 2037-2046.Google Scholar
  17. Cao L, Chen HZ, Wang M, Sun JZ (2002). Photoconductivity study of modified carbon nanotube/ oxotitanium phthalocyanine composites. J. Phys. Chem. B 6: 8971-8975.Google Scholar
  18. Carrero-Sánchez JC, Eliás AL, Mancilla R, Arrellín G, Terrones H, Laclette JP, Terrones M (2006). Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 6: 1609-1616. Google Scholar
  19. Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G (2007).Spectroscopic analysis confirms the interaction s between single-walled carbon nanotubes and various dyes com-monly used to assess cytotoxicity. Carbon (in press).Google Scholar
  20. Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G (2007). Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon 45: 34-40.Google Scholar
  21. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004).Google Scholar
  22. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4: 2233-2236.Google Scholar
  23. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai HJ (2003). Noncovalent functionalization of carbon nanotubes for highly specific electronic bio-sensors. Proc. Natl. Acad. Sci. USA. 100: 4984-4989. Google Scholar
  24. Chaudhary S, Kim JH, Ozkan M (2006). Controlled electron-beam-induced large-scale alignment of carbon nanotubes at metal electrodes. J. Nanoelectron. Optoelectron. 1: 211-214.Google Scholar
  25. Chen RJ, Zhang Y, Wang D, Dai H (2001). Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123: 3838-3839.Google Scholar
  26. Chen YC, Raravikar NR, Schadler LS, Ajayan PM, Zhao YP, Lu TM, Wang GC, Zhang XC (2002). Ultrafast optical switching properties of single-wall carbon nanotube polymer compos-ites at 1.55 µm. Appl. Phys. Lett. 81: 975-977. Google Scholar
  27. Chen J, Tao ZL, Li SL, Fan XB, Chou S-L (2002). Synthesis of TiSe2 Nanotubes/Nanowires. Adv. Mater. 14: 1379-1382. Google Scholar
  28. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003). Enhancement of thermal and electrical properties of carbon nanotube polymer com-posites by magnetic field processing. J. Appl. Phys. 94: 6034-6039. Google Scholar
  29. Cochet M, Maser WK, Benitor A, Callejas A, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001). Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 16: 1450-1451.Google Scholar
  30. Cui D, Tian F, Coyer SR, Wang J, Pan B, Gao F, He R and Zhang Y (2007). Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J. Nanosci. Nanotech. 7: 1639-1641. Google Scholar
  31. Cui D, Ozkan CS, Ravindran S, Yong K, Gao H (2004a). Encapsulation of Pt-labelled DNA mol-ecules inside carbon nanotubes. MCB 1: 113-121. Google Scholar
  32. Cui D, Tian F, Kong Y, Titushikin I, Gao H (2004b). Effects of single-walled carbon nanotubes on Polymerase Chain Reaction (2004). Nanotechnology 15: 154-157. Google Scholar
  33. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005). Effect of single-walled carbon nanotubes. Toxicol. Lett. 155: 73-85. Google Scholar
  34. Cui D (2007). Advances and prospects of biomolecules functionalized carbon nanotubes. J. Nanosci Nanotech 7: 1298-1314. Google Scholar
  35. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro 21: 438-448. Google Scholar
  36. Deng JG, Ding XB, Zhang WC, Peng YX, Wang JH, Long XP, Li P, Chan AS (2002). Carbon nanotube-polyaniline hybrid materials. European Polymer Journal 38: 2497-2501.Google Scholar
  37. Dillon A, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997). Storage of hydro-gen in single-walled carbon nanotubes. Nature 386: 377-379. Google Scholar
  38. Dintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4: 435-446. Google Scholar
  39. Dresselhaus MS, Dresslhous G, Avouris P (2000). In carbon nanotubes: synthesis, structure, prop-erties and application, Chap. 13. Springer, Berlin, Germany.Google Scholar
  40. Dresselhaus MS, Dresslhous G, Eklund PC (1996). Science of fullerenes and carbon nanotubes. Academic Press, San Diego, USA.Google Scholar
  41. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003). Well-aligned polyaniline/car-bon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41: 1551-1557. Google Scholar
  42. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002). Cellular locali-zation of a water-soluble fullerence derivate. Biochem. Biophys. Res. Commun. 294: 116-119. Google Scholar
  43. Foster J, Singamaneni S, Kattumenu R, Bliznyuk V (2005). Dispersion and phase separation of carbon nanotubes in ultrathin polymer films. J. Colloid and Interface Science 287: 167-172.Google Scholar
  44. Fournet P, Coleman JN, Lahr B, Drury A, Blau WJ, O’Brien DF, Hörhold HH (2001). Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90: 969-975. Google Scholar
  45. Gao JB, Yu AP, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004). Large-scale fabri-cation of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J. Am. Chem. Soc. 126: 16698-16699. Google Scholar
  46. Gao H, Kong Y, Cui D, Ozkan CS (2003). Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano. Lett. 3: 471-473. Google Scholar
  47. Gao H, Shi W, Fraund LB (2005). Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA. 102: 5469-5474. Google Scholar
  48. Georgakilas V, Pellarini F, Prato M, Guldi DM, Melle-Franco M, Zerbetto F (2002). Supramolecular self-assembled fullerene nanostructures. Proc. Natl. Acad. Sci. USA. 99: 5075-5080.Google Scholar
  49. Goho A (2004). Tiny trouble: nanoscale materials damage fish brains. Science News Online 165: 211. Google Scholar
  50. Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000). Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12: 1049-1052. Google Scholar
  51. Goh HW, Goh SH, Xu GQ, Lee KY, Yang GY, Lee YW, Zhang WD (2003). Optical limiting properties of double-C60-end-capped poly(ethylene oxide), double-C60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. J. Phys. Chem. B 107: 6056-6062.Google Scholar
  52. Grunlan JC, Mehrabi AR, Bannon MV, Bahr JL (2004). Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16: 150-154. Google Scholar
  53. Guo ZJ, Sadler PJ, Tsang SC (1998). Immobilization and visualization of DNA and proteins on carbon nnaotubes. Adv. Mater. 10: 701-703. Google Scholar
  54. Hafner JH, Cheung CL, Woolley AT, Lieber CM (2001). Structural and functional imaging with carbon nanotube AFM probes. Progress in Biophysics & Molecular Biology 77: 73-110.Google Scholar
  55. Han M, Gao X, Su JZ, Nie SM (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19: 631-635. Google Scholar
  56. Hong S, Leroueil PR, Janus EK, et al. (2006). Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17: 728-34. Google Scholar
  57. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE (2002). Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physcis A-Materials Science & Processing 74: 339-343. Google Scholar
  58. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004). Nanoparticles - known and unknown health risks. J. Nanobiotechnol. 2: 12 Google Scholar
  59. Hou PX, Xu ST, Yang QH, Liu C, Cheng HM (2003). Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41: 2471-2476.Google Scholar
  60. Huang XY, Li L, Qian HF, Dong CQ, Ren CJ (2006). A resonance energy transfer between chemi-luminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Ed. 45: 5140-5143. Google Scholar
  61. Hu H, Ni YC, Mandal SK, Montana V, Zhao N, Haddon RC, Parpura V (2005). Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for Neuronal Growth. J. Phys. Chem. B 109: 4285-4289. Google Scholar
  62. Huynh U, Dittmer J, Alivisators A (2002). Hybrid nanorod polymer solar cells. Science 295: 2425-2427. Google Scholar
  63. Ikkala O, Brinke G (2002). Functional materials based on self-assembly of polymeric supramole-cules. Science 295: 2407-2413. Google Scholar
  64. Iijima S (1991). Helical microtubules of graphitic carbon. Nature 354: 56-58. Google Scholar
  65. Jares-Erijman EA, Jovin TM (2003). FRET imaging. Nature Biotechnol. 21: 1387-1395. Google Scholar
  66. Joshi PP, Merchant SA, Wang YD, Schmidtke DW (2005). MEMS sensor material based on polypyrrole -carbon nanotube nanocomposite : film deposition and characterization . J . Micromech. Microengin. 5: 2019-2027.Google Scholar
  67. Kam NWS, Liu Z, Dai H (2006). Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 45: 577-581. Google Scholar
  68. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005). Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer destrction. Proc. Natl. Acad. Sci. USA. 102: 11600-11605. Google Scholar
  69. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004). Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 22: 211-213. Google Scholar
  70. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002). Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23: 761-765. Google Scholar
  71. Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Mortalin TK (2003). Imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Research 13: 503-507.Google Scholar
  72. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003). DNA-templated carbon nanotube field-effect transistor. Science 302: 1380-1382. Google Scholar
  73. Kilbride BE, Coleman JN, Fournet P, Cadek A, Hutzler S, Roth S, Blau WJ (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92: 4024-4030. Google Scholar
  74. Kim J, Grate JW (2003). Single-enzyme nanoparticles armored by a nanometer-scale organic/ inorganic network. Nano Lett. 3: 1219-1222. Google Scholar
  75. Kim JY, Kim M, Kim H, Joo J, Choi JH (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21: 147-151.Google Scholar
  76. Kong H, Gao C, Yan DY (2004). Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37: 4022-4030. Google Scholar
  77. Kong Y, Cui D, Ozkan CS, Gao H (2003). American Materials Research Society Symposium Proceeding-Biomicroelectrome Chanical Systems (BIOMEMS) 773: 111-116Google Scholar
  78. Kuempel ED, Tran CL, Castranova V, Bailer AJ (2006). Lung dosimetry and risk assessment of nano-particles: evaluating and extending current models in rats and humans. Inhal. Toxicol. 18: 717-24.Google Scholar
  79. Kymakis E, Amaratunga GAJ (2002a). Polymer-nanotube composites: burying nanotubesGoogle Scholar
  80. improves their field emission properties. Appl. Phys. Lett. 80: 1435-1437.Google Scholar
  81. Kymakis E and Amaratunga GAJ (2002b). Single-wall carbon nanotube/conjugated polymer pho-tovoltaic devices. Appl. Phys. Lett. 80: 112-114. Google Scholar
  82. Kymakis E, Amaratunga GAJ (2003). Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Solar Ener. Mater. Solar Cells 80: 465-472.Google Scholar
  83. Kymakis E, Alexandrou I, Amaratunga GAJ (2003). High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93: 1764-1768. Google Scholar
  84. Lam CW, James JT, McCluskey R, Hunter RL (2004). Pulmonary toxicity of single-wall carbon nnaotubes in mice 7 and 90 days after intracheal instillation. Toxicol. Sci. 77: 126-134.Google Scholar
  85. Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005). CdSe quantum dot-sin-gle wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater And Solar Cells 87: 733-746. Google Scholar
  86. Lee JW, Kim BK, Kim H, Han SC, Shin WS, Jin SH (2006). Convergent synthesis of symmetrical and unsymmetrical PAMAM dendrimers. Macromolecules 39: 2418-2422.Google Scholar
  87. Lefebvre J, Fraser JM, Homma Y, Finnie P (2004). Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes. Appl. Phys. A 78: 1107-1110. Google Scholar
  88. Levitsky IA, Kanelos PT, Woodbury DS, Euler WB (2006). Photoactuation from a carbon nano-tube-nafion bilayer composite. J. Phys. Chem. B. 110: 9421-9425. Google Scholar
  89. Li HJ, Wang XB, Song YL, Liu YQ, Li QS, Jiang L, Zhu BD (2001). Super-“amphiphobic” aligned carbon nanotube films. Angew. Chem. Int. Ed. 40: 1743-1746. Google Scholar
  90. Liang Z, Susha AS, Yu A, Caruso F (2002). Nanotubes prepared by layer-by-layer coating of porous membrane templates. Adv. Mater. 14: 1849-1853.Google Scholar
  91. Liu YJ, Nishimura N, Otani Y (2005). Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34: 173-187.Google Scholar
  92. Lin T, Bajpai V, Ji T, Dai LM (2003). Chemistry of carbon nanotubes. Australian J. Chem. 56: 635-651. Google Scholar
  93. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996). Large-scale synthesis of aligned carbon nanotubes. Science 274: 1701-1703. Google Scholar
  94. Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C, Hu J (2005).  Nanoparticle-PCR: Nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 44: 5100-5103.Google Scholar
  95. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Riqhi M, Spalluto G, Prato M, Ballerini  (2005). Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 5: 1107-1110. Google Scholar
  96. Lourie O, Cox DM, Wagner HD (1998). Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81: 1638-1641. Google Scholar
  97. Lu SX, Panchapakesan B (2005). Optically driven nanotube actuators. Nanotechnology 16: 2548-2554. Google Scholar
  98. Luo XL, Xu JJ, Wang JL, Chen HY (2005). Electrochemically deposited nanocomposite of chi-tosan and carbon nanotubes for biosensor application. Chem. Commun. 16: 2169-2171.Google Scholar
  99. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2005). Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med Chem. 48: 5892-5899.Google Scholar
  100. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006). PAMAM dendrimer-based multi-functional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7: 572-579. Google Scholar
  101. Merkoci A, Pumera M, Llopis X, Perez B, Valle M del, Alegret S (2005). New materials for elec-trochemical sensing VI: Carbon nanotubes. Trac-Trends in Anal. Chem. 24: 826-838.Google Scholar
  102. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Suerlund H, Martin CR (2002). Smart nano-tubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124: 11864-11865.Google Scholar
  103. Martin CR, Kohli P (2002). The emerging field of nanotube biotechnology. Nature Rev. Drug Discov. 2: 29-37. Google Scholar
  104. Maslov S, Sneppen K (2002). Specificity and stability in topology of protein networks. Science 296: 910-913. Google Scholar
  105. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004). Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled car-bon nanotube material. J. Toxicol. Environ. Health A 67: 87-107. Google Scholar
  106. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45: 739-748. Google Scholar
  107. Nalwa HS (2000). Handbook of Nanostructured Materials and Nanotechnology, vol. 5, Academic Press, New York.Google Scholar
  108. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16: 437-445. Google Scholar
  109. Odom TW, Huang JL, Lieber CM (2002). Single-walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N Y Acad. Sci. 960: 203-15. CrossRefGoogle Scholar
  110. Otten CJ, Lourie OR, Yu MF, Cowley JM, Dyer MJ, Ruoff RS, Buhro WE (2002). Crystalline boron nanowires. J. Am. Chem. Soc. 124: 4564-4565. Google Scholar
  111. Pan B, Cui D, Xu P, Huang T, Li Q, He R, Gao F (2007). Cellular uptake enhancement of polyamidoam-ine dendrimer modified single walled carbon nanotubes. J. Biomed. Pharmaceut. Eng. 1: 1-4.Google Scholar
  112. Pan B, Cui D, Gao F, He R (2006). Growth of multi-amine terminated poly(amidoamine)dendrim ers on the surface of carbon nanotubes. Nanotechnology 17: 2483-2489. Google Scholar
  113. Pan B, Cui D, He R, Gao F, Zhang Y (2006). Covalent attachment of quantum dot on carbon nano-tubes. Chem. Phys. Lett. 417: 419-424. Google Scholar
  114. Pan B, Cui D, Sheng Y, Ozkan CS, Gao F, et al. (2007). Dendrimer-modified magnetic nanoparti-cles enhance efficiency of gene delivery system. Cancer Res. 67: 8156-8163.Google Scholar
  115. Panhuis MIH, Sainz R, Innis PC, Kane-Maguire LAP, Benito AM, Martinez MT, Moulton SE, Wallace GG, Maser WK (2005).Optically active polymer carbon nanotube composite. J. Phys. Chem. B 109: 22725-22729.Google Scholar
  116. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003). Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125: 6160-6164. Google Scholar
  117. Pantarotto D, Briand JP, Prato M, Bianco A (2004a). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16-17.Google Scholar
  118. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004b). Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43: 5242-5246. Google Scholar
  119. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TL (2002). Dispersion of single wall carbon nanotubes by in situ polymeri-zation under sonication. Chem. Phys. Lett. 364: 303-308. Google Scholar
  120. Peng F, Fu X, Yu H, Wang H (2007). Preparation of carbon nanotube-supported Fe2O3 catalysts and their catalytic activities for ethylbenzene dehydrogenation. New Carbon Mater. 22: 213-217. Google Scholar
  121. Pengfei QF, Vermesh Q, Grecu M, Javey A, Wang O, Dai HJ, Peng S, Cho KJ (2003). Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3: 347-351. Google Scholar
  122. Raloff J (2005). Nano hazards: exposure to minute particles harms lungs, circulatory system. Sci. News Online 167:179.Google Scholar
  123. Rege K, Raravikar NR, Kim D-Y, Schadler LS, Ajayan PM, Dordick JS (2004). Enzyme-polymer-single walled carbon nanotube composites as biocatalystic films. Nano Lett. 3: 829-832.Google Scholar
  124. Ren Y, Fu YQ, Liao K, Li F, Cheng HM (2004). Fatigue failure mechanisms of single-walled car-bon nanotube ropes embedded in epoxy. Appl. Phys. Lett. 84: 2811-2813.Google Scholar
  125. Rouse JH, Lillehei PT, Sanderson J, Siochi EJ (2004). Polymer/Single-walled carbon nanotube films assembled via donor-acceptor interactions and their use as scaffolds for silica deposition. Chem. Mat. 16: 3904-3910. Google Scholar
  126. Salvetat JP, Bhattacharyya S, Pipes RB (2006). Progress on mechanics of carbon nanotubes and derived materials. J. Nanosci. Nanotechnol. 6: 1857-1882. Google Scholar
  127. Salem AK, Searson PC, Leong KW (2003). Multifunctional nanorods for gene delivery. Nat. Mater. 2: 668-671. Google Scholar
  128. Seeman NC (2005). From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30: 119-125. Google Scholar
  129. Shi D, Guo Y, Dong Z, Lian J, Wang W, Liu G, Wang L, Ewing RC (2006). Luminescent carbon nanotubes by surface functionalization. Adv. Mater. 18: 189-193. Google Scholar
  130. Shi D, Guo Y, Dong Z, Lian J, Wang W, Liu G, Wang L, Ewing RC (2007). Quantum-dot-acti-vated luminescent carbon nanotubes via a nanoscale surface functionalization for in vivo imaging. Adv. Mater 19(23): 4033-4037. Google Scholar
  131. Shim M, Kam NMS, Chen RJ, Li R, Dai H (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2: 285-288. Google Scholar
  132. Shino A, Fujioka K, Manabe N, Yamaya S, Goto Y, Yasuhara M, Yamamoto K (2005).Google Scholar
  133. Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol. Immunol. 49: 461-470.Google Scholar
  134. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909-1926.Google Scholar
  135. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005). Binding and condensation of plasmid DNA onto functional-ized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127: 4388-4396.Google Scholar
  136. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA. 103: 3357-3362. Google Scholar
  137. Snow ES, Perkins FK (2005).Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5: 2414-2417.Google Scholar
  138. Satapathy BK, Weidisch R, Potschke P, Janke A (2005). Crack toughness behaviour of multi-walled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromol. Rapid Commun. 26: 1246-1252. Google Scholar
  139. Sato Y, Yokoyam A, Kenichiro S, Akimoto Y, Shinichi Ogino, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005). Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1: 176-182. Google Scholar
  140. Stone V, Donaldson K (2006). Signs of stress. Nature Nanotechnology 1: 23-24. Google Scholar
  141. Sun TL, Wang GJ, Liu H, Feng L, Jiang L, Zhu DB (2003). Control over the wett-ability of an aligned carbon nanotube Film. J. Am. Chem. Soc. 125: 14996-14997. Google Scholar
  142. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004). Nanofibrous membranes prepared by multi-walled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37: 9899-9902. Google Scholar
  143. Tang CY, Xie XL, Wu XC, Li RK, Mai YW (2002). Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane. J. Mater. Sci. Mater. Med. 13: 1065-1069. Google Scholar
  144. Tang BZ, Xu HY (1999). Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32: 2569-2576. Google Scholar
  145. Tian F, Cui D, Schwarz H, Estrada GG, Kabayashi H (2006). Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20: 1202-1212. Google Scholar
  146. Treacy MMJ, Ebbesen TW, Gibson JM (1996). Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381: 678-681. Google Scholar
  147. Tulevski GS, Hannon J, Afzali A, Chen Z, Avouris P, Kagan CR (2007). Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Am. Chem. Soc. 129: 11964-11968. Google Scholar
  148. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006). Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5: 797-801. Google Scholar
  149. Valter B, Ram MK, Nicolini C (2002).Thermal desorption high-resolution mass spectrometry of mixed self-assembled monolayers on gold. Langmuir. 18: 1535-1541.Google Scholar
  150. Valentini L, Kenny JM (2005). Novel approaches to developing carbon nanotube-based polymer composites: fundamental studies and nanotech applications. Polymer 46: 6715-6718.Google Scholar
  151. Velasco-Santos C, Martý’nez-Herna’ndez AL, Fisher FT, Ruoff R, Castanío VM (2003a).Google Scholar
  152. Dynamical mechanical and thermal analysis of carbon nanotube-methyl methacrylate nano-composites. J. Phys. D-Applied Phys. 36: 1423-1428.Google Scholar
  153. Velasco-Santos C, Martý’nez-Herna’ndez AL, Fisher FT, Ruoff R, Castano V M (2003b).Google Scholar
  154. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15: 4470-4475.Google Scholar
  155. Vinuesa C Goodnow C (2002). Immunology: DNA drives autoimmunity. Nature 416: 595. Google Scholar
  156. Wang H, Christopherson GT, Xu ZY, Porcar L, Ho DL, Fry D, Hobbie EK (2005). Shear-SANS study of single-walled carbon nanotube suspensions.Chem. Phys. Lett. 416: 182-186.Google Scholar
  157. Wang P (2006). Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17: 574-579 Google Scholar
  158. Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jaqota A (2003). Peptides with selective affinity for carbon nano-tubes. Nature Mater. 2: 196-200. Google Scholar
  159. Weiss N, Kind H, Stockli T, Forro L, Kern K, Chatelain A (2001). Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 13: 184-188. Google Scholar
  160. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003). Physical interactions at carbon nano-tube-polymer interface. Polymer 44: 7757-7764.Google Scholar
  161. Woo HS, Czerw R, Webster S, Carroll DL, Ballato J, Strevens AE, O’Brien D, Blau WJ (2000). Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 77: 1393-1395. Google Scholar
  162. Xia H, Cheng D, Xiao C, Chan HS (2006). Controlled synthesis of Y-junction polyaniline nano-rods and nanotubes using in situ self-assembly of magnetic nanoparticles. J. Nanosci. Nanotechnol. 6: 3950-3954. Google Scholar
  163. Xiao T, Fang N, Chan V, Liao K (2004). A kinetic model for time-dependent fracture of carbon nanotubes. Nano Lett. 4: 1139-1142. Google Scholar
  164. Yang YL, Gupta MC (2005). Novel carbon nanotube-polystyrene foam composites for electro-magnetic interference shielding. Nano Lett. 5: 2131-2134. Google Scholar
  165. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003).DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882-1884.Google Scholar
  166. Yan H, Zhang X, Shen Z, Seeman C (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62-65. Google Scholar
  167. Yim T-J, Liu J, Lu Y, Kane RS, Dordick JS (2005). Highly active and stable DNA zyme -carbon nnaotube hybrids. J. Am. Chem. Soc. 127: 12200-12201. Google Scholar
  168. Yoo E, Habe T, Nakamura J (2005). Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials. Sci. Technol. Adv. Mater. 6: 615-619. Google Scholar
  169. Yoshida Y, Okano M, Wang S, Kobayashi M, Kawasumi M, Hagiwara H, Mitsumata M (1995). Hemodynamic-force-induced difference of interendothelial junctional complexes. Ann. N Y. Acad. Sci. 748: 104-120. CrossRefGoogle Scholar
  170. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000). Strength and breaking mecha-nism of multiwalled carbon nanotubes under tensile load. Science 287: 637-640.Google Scholar
  171. Zhao B, Hu H, Yu AP, Perea D, Haddon RC (2005). Synthesis and characterization of water solu-ble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc. 127: 8197-8203.Google Scholar
  172. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003). DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2: 338-342.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Daxiang Cui
    • 1
  1. 1.Department of Bio-Nano Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key laboratory for thin film and microfabrication of Ministry of Education, Institute of Micro and Nano Science and TechnologyShanghai Jiaotong UniversityShanghaiP. R. China

Personalised recommendations