Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

  • Robert D. Bolskar
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or “gadofullerenes” are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivo T 1 -weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.


Metallofullerene endohedral gadolinium magnetic resonance imaging contrast agent relaxivity cellular imaging molecular imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest. Radiol. 41: 332-338. CrossRefGoogle Scholar
  2. Ashcroft JM, Hartman KB, Kissell KR, Mackeyev Y, Pheasant S, Young S, Van der Heide PAW, Mikos AG, Wilson LJ (2007) Single-molecule I2@US-tube nanocapsules: a new X-ray contrast-agent design. Adv. Mater. 19: 573-576. CrossRefGoogle Scholar
  3. Bolskar RD Alford JM (2003) Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem. Commun. 11: 1292-1293. CrossRefGoogle Scholar
  4. Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and per-mit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 125: 5471-5478. CrossRefGoogle Scholar
  5. Brown G, Bailey SR, Novotny M, Carter R, Flahaut E, Coleman KS, Hutchison JL, Green MLH, Sloan J (2003) High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Appl. Phys. A 76: 457-462. CrossRefGoogle Scholar
  6. Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl. Acad. Sci. USA 96: 5182-5187. CrossRefGoogle Scholar
  7. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99: 2293-2352.CrossRefGoogle Scholar
  8. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) Fullerenes with metals inside. J. Phys. Chem. 95: 7564-7568. CrossRefGoogle Scholar
  9. Chen YK, Chu A, Cook J, Green MLH, Harris PJF, Heesom R, Humphries M, Sloan J, Tsang SC, Turner JFC (1997) Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 7: 545-549.CrossRefGoogle Scholar
  10. Collidge TA, Thomson PC, Mark PB, Traynor JP, Jardine AG, Morris ST, Simpson K, Roditi GH (2007) Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology 245: 168-175. CrossRefGoogle Scholar
  11. Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393: 668-671. CrossRefGoogle Scholar
  12. Diener MD, Bolskar RD, Alford JM (2002) Redox properties and purification of endohedral met-allofullerenes. In: Akasaka T, Nagase S (eds.) Endofullerenes: a new family of carbon clusters. Kluwer, Dordrecht, pp. 133-151.Google Scholar
  13. Diener MD, Alford JM, Kennel SJ, Mirzadeh S (2007) 212Pb@C60 and its water-soluble deriva-tives: synthesis, stability, and suitability for radioimmunotherapy. J. Am. Chem. Soc. 129: 5131-5138. CrossRefGoogle Scholar
  14. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3: 1298-1320. CrossRefGoogle Scholar
  15. Edelson E (1991) Buckyball: the magic molecule. Pop. Sci. 239(August): 52-57, 87.Google Scholar
  16. Elliott B, Yu L, Echegoyen L (2005) A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. J. Am. Chem. Soc. 127: 10885-10888. CrossRefGoogle Scholar
  17. Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC (2006) In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 240: 756-764. CrossRefGoogle Scholar
  18. Funasaka H, Sakurai K, Oda Y, Yamamoto K, Takahashi T (1995) Magnetic properties of Gd@ C82 metallofullerene. Chem. Phys. Lett. 232: 273-277. CrossRefGoogle Scholar
  19. Ge Z, Duchamp JC, Cai T, Gibson HW, Dorn HC (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J. Am. Chem. Soc. 127: 16292-16298.CrossRefGoogle Scholar
  20. Grobner T (2006) Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial Transplant. 21: 1104-1108.Google Scholar
  21. Grobner T, Prischl FC (2007) Gadolinium and nephrogenic systemic fibrosis. Kidney Int. 72: 260-264. CrossRefGoogle Scholar
  22. Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2: 1009-1013. CrossRefGoogle Scholar
  23. Hartman KB, Hamlin DK, Wilbur DS, Wilson LJ (2007) 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 3: 1496-1499. CrossRefGoogle Scholar
  24. Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Tóth E, Merbach AE, Wilson LJ (2008) Gadonanotubes as ultra-sensitive pH-smart probes for magnetic resonance imaging. Nano Lett. 8: 415-419. CrossRefGoogle Scholar
  25. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Tittel FK, Smalley RE (1985) Lanthanum com-plexes of spheroidal carbon shells. J. Am. Chem. Soc. 107: 7779-7780. CrossRefGoogle Scholar
  26. Idée JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 20: 563-576. CrossRefGoogle Scholar
  27. Iezzi EB, Duchamp JC, Fletcher KR, Glass TE, Dorn HC (2002) Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents. Nano Lett. 2: 1187-1190.CrossRefGoogle Scholar
  28. Kato H, Suenaga K, Mikawa M, Okumura M, Miwa N, Yashiro A, Fujimura H, Mizuno A, Nishida Y, Kobayashi K, Shinohara H (2000) Syntheses and EELS characterization of water-soluble multi-hydroxyl Gd@C82 fullerenols. Chem. Phys. Lett. 324: 255-259.CrossRefGoogle Scholar
  29. Kato H, Kanazawa Y, Okumura M, Taninaka A, Yokawa T, Shinohara H (2003) Lanthanoid endohedral metallofullerenols for MRI contrast agents. J. Am. Chem. Soc. 125: 4391-4397.CrossRefGoogle Scholar
  30. Kissell KR, Hartman KB, Van der Heide PA, Wilson LJ (2006) Preparation of I2@SWNTs: synthesis and spectroscopic characterization of I2-loaded SWNTs. J. Phys. Chem. B 110: 17425-17429.CrossRefGoogle Scholar
  31. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347: 354-358. CrossRefGoogle Scholar
  32. Krause M, Dunsch L (2005) Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength. Angew. Chem. Int. Ed. Engl. 44: 1557-1560. CrossRefGoogle Scholar
  33. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem. Rev. 87: 901-927. CrossRefGoogle Scholar
  34. Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Asokan S, Wong MS, Wilson LJ, Merbach AE (2005) Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@ C60(OH)x and Gd@C60[C(COOH2)]10. J. Am. Chem. Soc. 127: 9368-9369.CrossRefGoogle Scholar
  35. Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Wilson LJ, Merbach AE (2007) Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J. Phys. Chem. C 111: 5633-5639. CrossRefGoogle Scholar
  36. Lu X, Li H, Sun B, Shi Z, Gu Z (2005) Selective reduction and extraction of Gd@C82 and Gd2@ C80 from soot and the chemical reaction of their anions. Carbon 43: 1546-1549.CrossRefGoogle Scholar
  37. Mackeyev YA, Marks JW, Rosenblum MG, Wilson LJ (2005) Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes. J. Phys. Chem. B 109: 5482-5484.CrossRefGoogle Scholar
  38. Mikawa M, Kato H, Okumura M, Narazaki M, Kanazawa Y, Miwa N, Shinohara H (2001) Paramagnetic water-soluble metallofullerene having the highest relaxivity for MRI contrast agents. Bioconj. Chem. 12: 510-514. CrossRefGoogle Scholar
  39. Miyamoto A, Okimoto H, Shinohara H, Shibamoto Y (2006) Development of water-soluble met-allofullerenes as X-ray contrast media. Eur. Radiol. 16: 1050-1053. CrossRefGoogle Scholar
  40. Nagase S, Kobayashi K, Akasaka T, Wakahara T (2000) Endohedral metallofullerenes: theory, electrochemistry, and chemical reactions. In: Kadish KM, Ruoff RS (eds.) Fullerenes: chem-istry, physics, and technology. Wiley, New York, pp. 395-436.Google Scholar
  41. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chem-istry, biology, and nanoscience. Acc. Chem. Res. 36: 807-815. Google Scholar
  42. Okumura M, Mikawa M, Yokawa T, Kanazawa Y, Kato H, Shinohara H (2002) Evaluation of water-soluble metallofullerenes as MRI contrast agents. Acad. Radiol. 9: S495-S497.CrossRefGoogle Scholar
  43. Qingnuan L, Yan X, Xiaodong Z, Ruili L, Gieqie D, Xiaoguang S, Shaoliang C, Wenxin L (2002) Preparation of 99 mTc-C60(OH)x and its biodistribution studies. Nucl. Med. Biol. 29: 707-710.CrossRefGoogle Scholar
  44. Qu L, Cao W, Xing G, Zhang J, Yuan H, Tang J, Cheng Y, Zhang B, Zhao Y, Lei H (2006) Study of rare earth encapsulated carbon nanomolecules for biomedical uses. J. Alloys Compd. 408-412: 400-404.Google Scholar
  45. Raebiger JW, Bolskar RD (2008) Improved production and separation processes for gadolinium metallofullerenes. J. Phys. Chem. C 112: 6605-6612. CrossRefGoogle Scholar
  46. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97: 3379-3383. CrossRefGoogle Scholar
  47. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fuller-enes. Nano Lett. 4: 1881-1887. CrossRefGoogle Scholar
  48. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 161: 135-142.CrossRefGoogle Scholar
  49. Shinohara H (2000) Endohedral metallofullerenes. Rep. Prog. Phys. 63: 843-892.CrossRefGoogle Scholar
  50. Shu CY, Gan LH, Wang CR, Pei XL, Han HB (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44: 496-500.CrossRefGoogle Scholar
  51. Shu CY, Zhang EY, Xiang JF et al. (2006) Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH)16(NHCH2CH2COOH)8]x. J. Phys. Chem. B 110: 15597-15601. CrossRefGoogle Scholar
  52. Shukla RB, Kumar K, Weber R, Zhang X, Tweedle M (1997) Alteration of electronic relaxation in MR contrast agents through de-novo ligand design. Acta Radiol Suppl. 38(S412): 121-123.Google Scholar
  53. Sitharaman B, Bolskar RD, Rusakova I, Wilson LJ (2004) Gd@C60[C(COOH)2]10 and Gd@ C60(OH)x: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett. 4: 2373-2378. CrossRefGoogle Scholar
  54. Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ (2005) Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 31: 3915-3917.CrossRefGoogle Scholar
  55. Sitharaman B, Wilson LJ (2006) Gadonanotubes as new high-performance MRI contrast agents. Int. J. Nanomed. 1: 291-295. Google Scholar
  56. Sitharaman B, Tran LA, Pham QP, Bolskar RD, Muthupillai R, Flamm SD, Mikos AG, Wilson LJ (2007) Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imag. 2: 139-146. CrossRefGoogle Scholar
  57. Sloan J, Cook J, Green MLH, Hutchison JL, Tenne R (1997) Crystallization inside fullerene related structures. J. Mater. Chem. 7: 1089-1095. CrossRefGoogle Scholar
  58. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401: 55-57. CrossRefGoogle Scholar
  59. Stevenson S, Stephen RR, Amos TM, Cadorette VR, Reid JE, Phillips JP (2005) Synthesis and purification of a metallic nitride fullerene bisadduct: exploring the reactivity of Gd3N@C80. J. Am. Chem. Soc. 127: 12776-12777. CrossRefGoogle Scholar
  60. Stevenson S, Harich K, Yu H, Stephen RR, Heaps D, Coumbe C, Phillips JP (2006)Google Scholar
  61. Nonchromatographic “Stir and Filter Approach” (SAFA) for Isolating Sc3N@C80 metallofullerenes. J. Am. Chem. Soc. 128: 8829-8835.Google Scholar
  62. Sun B, Gu Z (2002) Solvent-dependent anion studies on enrichment of metallofullerene. Chem. Lett. 31: 1164-1165. CrossRefGoogle Scholar
  63. Thrash TP, Cagle DW, Alford JM, Wright K, Ehrhardt GJ, Mirzadeh S, Wilson LJ (1999) Toward fullerene-based radiopharmaceuticals: high-yield neutron activation of endohedral 165Ho met-allofullerenes. Chem. Phys. Lett. 308: 329-336. CrossRefGoogle Scholar
  64. Tóth É, Helm L, Merbach AE (2001) Relaxivity of Gadolinium(III) Complexes: theory and mechanism. In: Tóth É, Merbach AE (eds.) The chemistry of contrast agents in medical mag-netic resonance imaging. Wiley, Chichester, pp. 45-119.Google Scholar
  65. Tóth É, Bolskar RD, Borel A, González G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127: 799-805.CrossRefGoogle Scholar
  66. Tsuchiya T, Wakahara T, Shirakura S, Maeda Y, Akasaka T, Kobayashi K, Nagase S, Kato T, Kadish KM (2004) Reduction of endohedral metallofullerenes: a convenient method for isola-tion. Chem. Mater. 16: 4343-4346. CrossRefGoogle Scholar
  67. Tsuchiya T, Wakahara T, Lian Y, Maeda Y, Akasaka T, Kato T, Mizorogi N, Nagase S (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J. Phys. Chem. B 110: 22517-22520. CrossRefGoogle Scholar
  68. Tsuchiya T, Sato K, Kurihara H, Wakahara T, Nakahodo T, Maeda Y, Akasaka T, Ohkubo K, Fukuzumi S, Kato T, Mizorogi N, Kobayashi K, Nagase S (2006) Host-guest complexation of endohedral metallofullerene with azacrown ether and its application. J. Am. Chem. Soc. 128: 6699-6703. CrossRefGoogle Scholar
  69. Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45: 1891-1898. CrossRefGoogle Scholar
  70. Weiss FD, Elkind JL, O’Brien SC, Curl RF, Smalley RE (1988) Photophysics of metal complexes of spheroidal carbon shells. J. Am. Chem. Soc. 110: 4464-4465. CrossRefGoogle Scholar
  71. Wilson LJ (1999) Medical applications of fullerenes and metallofullerenes. Electrochem. Soc. Interface 8: 24-28. Google Scholar
  72. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord. Chem. Rev. 190-192: 199-207.Google Scholar
  73. Wilson SR, MacFarland D, Zhou Z, Zhang J, Shukla R (2007) Commercial development of tri-metasphere metallofullerene MRI contrast agents. Abstract 1127: 211th Meeting of The Electrochemical Society, Chicago, IL, May 6-10.Google Scholar
  74. Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R (2004) Influences of structural properties on stability of fullerenols. J. Phys. Chem. B 108: 11473-11479. CrossRefGoogle Scholar
  75. Xu JY, Li QN, Li JG, Ran TC, Wu SW, Song WM, Chen SL, Li WX (2007) Biodistribution of 99 mTc-C60(OH)x in Sprague-Dawley rats after intratracheal instillation. Carbon 45: 1865-1870. CrossRefGoogle Scholar
  76. Zhang S, Sun D, Li X, Pei F, Liu S (1997) Synthesis and solvent enhanced relaxation property of water-soluble endohedral metallofullerenes. Fullerene Sci. Tech. 5: 1635-1643.Google Scholar
  77. Zhang J, Liu K, Xing G, Ren T, Wang S (2007) Synthesis and in vivo study of metallofullerene based MRI contrast agent. J. Radioanal. Nucl. Chem. 272: 605-609. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Robert D. Bolskar
    • 1
  1. 1.TDA Research Inc.Wheat RidgeUSA

Personalised recommendations