Advertisement

Biological Effects in Cell Cultures of Fullerene C60: Dependence on Aggregation State

  • Levon B. Piotrovsky
  • Mikhail Yu. Eropkin
  • Elena M. Eropkina
  • Marina A. Dumpis
  • Oleg I. Kiselev
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)

Abstract

The mechanisms of biological action of various fullerene preparations – water-soluble C60/polyvinylpyrrolidone (C60/PVP) complex and solid-state pristine fullerene C60 (fullerene on the surfaces [FoS]), in cell-free system and in different cell cultures were studied. In the cell-free system the C60/PVP complex showed the pro-oxidant activity. On the other hand, FoS in the darkness proved to be antioxidant (AO) and was nontoxic for different cell lines. But under visible-light illumination cell viability dropped in time- and light-dose-dependent way. Moreover, photodynamic damage of cells of tumor origin was greater than normal. The effect of illumination was reversed by some antioxidants. Therefore, redox properties in cell-free system and biological activity of pristine fullerene in vitro, in particular, photoxicity, depend on its aggregation state.

Keywords

pristine fullerene C60/PVP complex cell culture antioxidant prooxidant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson T, Nilsson K, Sundahl M et al. (1992) C60 embedded in g-cyclodextrin: a water-soluble fullerene. J Chem Soc Chem Commun. 604-605.Google Scholar
  2. Andrews MJ, Garle MJ, Clothier RH et al. (1997) Reduction of the new tetrazolium dye, Alamar Blue™, in cultured rat hepatocytes and liver fractions. ATLA. 25: 641-653.Google Scholar
  3. Andrievsky GV, Kosevich MV, Vovk OM et al. (1995) On the production of an aqueous colloidal solution of fullerene. J Chem Soc Chem Commun. 1281-1282.Google Scholar
  4. Andrievsky G, Klochkov V, Derevyanchenko L (2005) Is C60 fullerene molecule toxic? Full Nanotubes Carb Nanostruct. 13: 363-376.Google Scholar
  5. Bang J, Guerrero P, Lopez D et al. (2004) Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams. J Nanosci Nanotechnol. 4: 716-718.CrossRefGoogle Scholar
  6. Bass DA, Parce JW, Dechatelet LR et al. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 130: 1910-1918.Google Scholar
  7. Belgorodsky B, Fadeev L, Kolsenik J, Gozin M (2006) Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein. ChemBioChem. 7: 1783-1789.CrossRefGoogle Scholar
  8. Bensasson RV, Bienvenue E, Dellinger M et al. (1994) C60 in model biological systems. A visible-UV absorption study of solvent dependent parameters and solute aggregation. J Phys Chem. 98: 492-3500.Google Scholar
  9. Bianco A, Da Ros T, Prato M et al. (2001) Fullerene-based amino acids and peptides. J Pept Sci. 7: 208-219. CrossRefGoogle Scholar
  10. Bosi S, Da Ros T, Spalluto G et al. (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 38: 913-923. CrossRefGoogle Scholar
  11. Brant J, Lecoanet H, Hotze M et al. (2005a) Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol. 39: 6343-6351.CrossRefGoogle Scholar
  12. Brant J, Lecoanet H, Wiesner MR (2005b) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res. 7: 545-553. CrossRefGoogle Scholar
  13. Brant JA, Labille J, Bottero JY et al. (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir. 22: 3878-3885. CrossRefGoogle Scholar
  14. Braun T (1997) Water soluble fullerene-cyclodextrin supramolecular assembles. Preparation, structure, properties (an annotated bibliography). Full Sci Technol. 5: 615-626.Google Scholar
  15. Buvari-Barcza A, Rohonczy J, Rozlosnik N et al. (2001) Aqueous solubilization of [60]fullerene via inclusion complex formation and the hydration of C60. J Chem Soc Perkin Trans. 2: 191-196. Google Scholar
  16. Chiron J, Lamande J, Moussa F, et al. (2000) Effect of “micronized” C60 fullerene on the micro-bial growth in vitro. Ann Pharm Fr. 58: 170-175 (French).Google Scholar
  17. Cheng F, Yang X, Zhu H et al. (2000) Synthesis of oligoadducts of malonic acid C60 and their scavenging effects on hydroxyl radical. J Phys Chem Solids. 61: 1145-1148.CrossRefGoogle Scholar
  18. Clothier R, Starzec G, Pradel L et al. (2002) The prediction of human skin responses by using the combined in vitro fluorescein leakage/Alamar Blue (Resazurin) assay. ATLA. 30: 493-504. Google Scholar
  19. Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. J Chem Soc Chem Commun. 663-669.Google Scholar
  20. Da Ros T, Spalluto G, Prato M et al. (2001) Biological applications of fullerene derivatives: a brief overview. Croatica Chemica Acta. 74: 743-755. Google Scholar
  21. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C60 and C70, in water. preparation and characteristics. Langmuir. 17: 6013-6017. Google Scholar
  22. Eropkin MYu, Eropkina EM, Kiselev OI (2007) Studying the effect of antioxidants and/or anti-hypoxants on cell cultures under conditions of cytotoxic action of rimantadine. Exp Clin Pharmacol. 70: 56-61 (Russian).Google Scholar
  23. Foley S, Crowley C, Smaihi M et al. (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 294: 116-119. CrossRefGoogle Scholar
  24. Fortner ID, Lyon DY, Sayes CM et al. (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 39: 4307-4316. CrossRefGoogle Scholar
  25. Guldi DM (1997) Capped fullerenes: stabilization of water-soluble fullerene monomers as studied by flash photolysis and pulse radiolysis. J Phys Chem A. 101: 3895-3900.CrossRefGoogle Scholar
  26. Guldi DM, Asmus KD (1999) Activity of water-soluble fullerenes towards •OH-radicals and molecular oxygen. Radiation Phys Chem. 56: 449-456. CrossRefGoogle Scholar
  27. Guldi DM, Hungerbuhler H, Asmus KD (1995) Stable monolayers and Langmuir-Blodgett films of functionalized fullerenes. J Phys Chem. 99: 17673-17676. CrossRefGoogle Scholar
  28. Guldi DM, Zerbetto F, Georgakilas V et al. (2005) Ordering fullerene materials at nanometer dimensions. Acc Chem Res. 38: 38-43. CrossRefGoogle Scholar
  29. Henry TB, Menn FM, Fleming JT et al. (2007) Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expres-sion. Environ. Health Perspect. 115: 1059-1065. Google Scholar
  30. Hirayama J, Abe H, Kamo N et al. (1999) Photoinactivation of vesicular stomatitis virus with fullerene conjugated with methoxy polyethylene glycol amine. Biol Pharm Bull. 22: 1106-1109. Google Scholar
  31. Hoffmann R (2003) Thoughts on aesthetics and visualization in chemistry. HYLE. 9: 7-10. Google Scholar
  32. Ikeda A, Sato T, Kitamura K et al. (2005) Efficient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org Biomol Chem. 3: 2907-2909.CrossRefGoogle Scholar
  33. Ikeda A, Irisa T, Hamano T et al. (2006) Control of self-aggregation of fullerenes byGoogle Scholar
  34. connection with calyx[4]arene: solvent and guest effects to particle size. Org Biomol Chem. 4: 519-523.Google Scholar
  35. Ikeda A, Doi Y, Hashizume M et al. (2007) An extremely effective DNA photocleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J Am Chem Soc. 129: 4140-4141. CrossRefGoogle Scholar
  36. Janot JM, Bienvenüe E, Seta P et al. (2000) [60]Fullerene and three [60]fullerene derivatives in membrane model environments. J Chem Soc Perkin Tran. 2: 301-306. CrossRefGoogle Scholar
  37. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem. 4: 767-779. CrossRefGoogle Scholar
  38. Kiselev O, Kozeletskaya K, Melenevskaya E et al. (1998a) The antiviral activity of the complex of fullerene C60 with poly(N-vinyl-pyrrolidone). Mol Mat. 11: 121-124.Google Scholar
  39. Kiselev O, Kozeletskaia KN, Melenevskaia EYu et al. (1998b) Antiviral activity of fullerene (60)C complexed with poly(N-vinylpyrrolidone). Dokl Akad Nauk. 361: 547-549 (Russian).Google Scholar
  40. Krakovjak MG, Anufrieva EV, Anan’eva TD, Nekrasova TN (2005a) Water-soluble fullerene complexes with n-vinylcaprolactam homo- and copolymers and a method for preparation of these complexes. Russian patent RU 2 264 415 10.02.2005Google Scholar
  41. Krakovjak MG, Anufrieva EV, Piotrovskij LB et al. (2005b) Water-soluble complex of fullerene with poly-N-vinylpyrrolidone and method for preparing these complexes. Russian patent RU 2 255 942 20.02.2005.Google Scholar
  42. Krakovjak MG, Anufrieva EV, Anan’eva TD et al. (2006) Water-soluble complexes of poly(N-vinylamides) of various structures with C60 and C70 fullerenes. Polym Sci Ser A. 48: 590-595. CrossRefGoogle Scholar
  43. Kratschmer W, Lamb LD, Fostiropoulos K et al. (1990) Solid C60: a new form of carbon. Nature. 347: 354-358. CrossRefGoogle Scholar
  44. Lautraite S, Bigot-Lasserre D, Bars R et al. (2003) Optimization of cell-based assays for medium throughput screening of oxidative stress. Toxicol In Vitro. 17: 207-220. CrossRefGoogle Scholar
  45. Li H, Hao J (2007) Phase behavior of salt-free catanionic surfactant aqueous solutions with fuller-ene C60 solubilized. J Phys Chem B. 111: 7719-7724. CrossRefGoogle Scholar
  46. Lin YL, Lei HY, Luh TY et al. (2000) Light-independent inactivation of dengue-2 virus by car-boxyfullerene C3 isomer. Virology. 275: 258-262. CrossRefGoogle Scholar
  47. Lyon D, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water sus-pensions: effects of preparation method and particle size. Environ Sci Technol. 40: 4360-4366. CrossRefGoogle Scholar
  48. Moussa F, Chretien P, Dubois P et al. (1995) The influence of C60 powders on cultured human leukocytes. Full Sci Technol. 3: 333-342. Google Scholar
  49. Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopol-yhedra in common fuel-gas combustion sources. Mater Characteriz. 55: 50-65.CrossRefGoogle Scholar
  50. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environ Health Perspect. 112: 1058-1062.CrossRefGoogle Scholar
  51. Piotrovsky LB (2006) Biological activity of pristine fullerene C60. In: Dai L (ed) Carbon Nanotechnology. Elsevier, Amsterdam.Google Scholar
  52. Piotrovsky LB, Kiselev OI (2004) Fullerenes and viruses. Full Nanotubes Carb Nanostruct. 12: 397-403. CrossRefGoogle Scholar
  53. Piotrovsky LB, Kiselev OI (2006) Fullerenes in Biology. Rostok, St. Petersburg, Russia.Google Scholar
  54. Piotrovsky LB, Dumpis MA, Poznyakova LN et al. (2000) Study of the biological activity of the adducts of fullerenes with poly(N-vinylpyrrolidine). Mol Mat. 13: 41-50.Google Scholar
  55. Piotrovskii LB, Kozeletskaia KN, Medvedeva NA et al. (2001) Effect of fullerene C60-polyvinylpyrrolidone complexes on influenza virus reproduction. Voprosy Virusologii. 46(3): 38-42 (Russian).Google Scholar
  56. Podol’skii IYa, Kondrat’eva EV, Shcheglov IV et al. (2002) Fullerene C60 complexed with poly(N-vinylpyrrolidone) prevents the disturbance of long-term memory consolidation. Phys Solid States. 44: 552-554.Google Scholar
  57. Podolski IYa, Kondratjeva EV, Gurin SS et al. (2004) Fullerene C60 complexed with poly(N-vinylpyrrolidone) prevents the disturbance of long-term memory consolidation induced by cycloheximide. Full Nanotubes Carb Nanostruct. 12: 421-424. Google Scholar
  58. Popov VA, Tyunin MA, Zaitseva OB et al. (2007) Influence of C60/PVP complex on the healing of wounds and the toxicity in the experiments in vivo. In: Book of abstracts 8th Biennial International Workshop Fullerenes and Atomic Clusters, July 2-6, St. Peterburg, Russia P173.Google Scholar
  59. Prat F, Stackow R, Bernstein R et al. (1999) Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives. J Phys Chem. 103: 7230-7235. Google Scholar
  60. Prato M (1999) Fullerene materials. Top Curr Chem. 199: 173-186. CrossRefGoogle Scholar
  61. Richmond RC, Gibson UJ (1994) Fullerene coated surfaces and uses thereof. US Patent 5,310,669 May 10, 1994.Google Scholar
  62. Scrivens WA, Tour JM, Creek KE et al. (1994) Synthesis of 14C-labeled C60, its suspension in water and its uptake by human keratinocytes. J Am Chem Soc. 116: 4517-4518.CrossRefGoogle Scholar
  63. Sessler JL, Jayawickramarajah J, Gouloumis A et al. (2006) Guanosine and fullerene derived de-aggregation of a new phthalocyanine-linked cytidine derivative. Tetrahedron. 62: 2123-2131.CrossRefGoogle Scholar
  64. Shibuya M, Kato M, Ozawa M et al. (1999) Detection of buckminsterfullerene in usual soot and commercial charcoals. Full Sci Technol. 7: 181-193. Google Scholar
  65. Sijbesma R, Srdanov G, Wudl F et al. (1993) Synthesis of fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc. 115: 6510-6512. CrossRefGoogle Scholar
  66. Sirotkin AK, Zarubaev VV, Poznyiakova LN et al. (2006) Pristine fullerene C60: different water soluble forms - different mechanisms of biological action. Full Nanotubes Carb Nanostruct. 43: 327-333. CrossRefGoogle Scholar
  67. Sushko ML, Klenin SI, Dumpis MA et al. (1999) Light scattering in water solutions of fullerene-containing polymers: Part 2. Effect of the molecular weight of the carrier molecule. Tech Phys Lett. 25: 778-779. Google Scholar
  68. Tokuyama H, Yamago S, Nakamura E et al. (1993) Photoinduced biochemical activity of fullerene carbocyclic acid. J Am Chem Soc. 115: 7918-7919. CrossRefGoogle Scholar
  69. Tsuchiya T, Oguri I, Yamakoshi YN et al. (1996) Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett. 393: 139-145. CrossRefGoogle Scholar
  70. Vinogradova LV, Melenevskaya EYu, Khachaturov AS et al. (1998) Water soluble complexes of fullerene C60 with poly-N-vinylpyrrolidone. Vysokomol Soed. 40: 1854-1862 (Russian).Google Scholar
  71. Yamakoshi YN, Yagami T, Fukuhara K et al. (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc Chem Commun. 517-518.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Levon B. Piotrovsky
    • 1
  • Mikhail Yu. Eropkin
    • 2
  • Elena M. Eropkina
    • 2
  • Marina A. Dumpis
    • 1
  • Oleg I. Kiselev
    • 2
  1. 1.Institute of Experimental MedicineRussian Academy of Medical SciencesSaint PetersburgRussia
  2. 2.Institute of InfluenzaRussian Academy of Medical SciencesSaint PetersburgRussia

Personalised recommendations