Biomedical Applications of Functionalised Carbon Nanotubes

  • Alberto Bianco
  • Raquel Sainz
  • Shouping Li
  • Hélène Dumortier
  • Lara Lacerda
  • Kostas Kostarelos
  • Silvia Giordani
  • Maurizio Prato
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


This chapter describes the developing potential of carbon nanotubes (CNTs) in biomedicine. Methodologies to render nanotubes biocompatible, the related studies on cell uptake, applications in vaccine delivery, interaction with nucleic acids and impact on health will be described. The use of CNTs for biomedical applications is acquiring more and more substantiating evidence for efficient development. It is clear that some important issues related to the health impact including the biodistribution, accumulation and elimination have to be addressed more thoroughly before CNTs can be proposed for clinical trials. However, CNTs show remarkable carrier properties, with a very strong tendency to cross cell membranes. Although, the toxicological studies on pristine CNTs are contradictory, showing a certain degree of risk, it is becoming evident that functionalised CNTs have reduced toxic effects. Therefore, the combination of cell uptake capacity with high loading of cargo molecules achievable with CNTs makes this new carbon nanomaterial a promising candidate for innovative therapies.


Carbon nanotubes Functionalization Drug Delivery Gene transfer Health Biodistribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajayan PM (1999) Nanotubes from carbon. Chem. Rev. 99: 1787-1799.Google Scholar
  2. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 459-461.Google Scholar
  3. Allen TM, Cullis PR (2004) Drug delivery systems: Entering the mainstream. Science 303: 1818-1822.Google Scholar
  4. Arnold MS, Guler MO, Hersam MC, Stupp SI (2005) Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21: 4705-4709.Google Scholar
  5. Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett. 2: 1413-1417.Google Scholar
  6. Bale SS, Asuri P, Karajanagi SS, Dordick JS, Kane RS (2007) Protein-directed formation of silver nanoparticles on carbon nanotubes. Adv. Mater. 19: 3167-3170.Google Scholar
  7. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of indi-vidual carbon nanotubes in aqueous solutions. Nano Lett. 2: 25-28.Google Scholar
  8. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes - the route toward applica-tions. Science 297: 787-792.Google Scholar
  9. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nano-tubes as single-molecule biosensors. Nano Lett. 3: 727-730.Google Scholar
  10. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applica-tions? Adv. Mater. 15: 1765-1768.Google Scholar
  11. Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP, Muller S, Prato M, Partidos CD (2005a) Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 127: 58-59.Google Scholar
  12. Bianco A, Kostarelos K, Partidos CD, Prato M (2005b) Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571-577.Google Scholar
  13. Boczkowski J, Lanone S (2007) Potential uses of carbon nanotubes in the medical field: How worried should patients be? Nanomedicine 2: 407-410.Google Scholar
  14. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160: 121-126.Google Scholar
  15. Buzaneva E, Karlash A, Yakovkin K, Shtogun Y, Putselyk S, Zherebetskiy D, Gorchinskiy A, Popova G, Prilutska S, Matyshevska O, Prilutskyy Y, Lytvyn P, Scharff P, Eklund P (2002) DNA nanotechnology of carbon nanotube cells: Physico-chemical models of self-organization and properties. Mater. Sci. Eng. C 19: 41-45.Google Scholar
  16. Cai D, Mataraza JM, Qin ZH, Huang ZP, Huang JY, Chiles TC, Carnahan D, Kempa K, Ren ZF (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spear-ing. Nat. Methods 2: 449-454.Google Scholar
  17. Cai H, Cao XN, Jiang Y, He PG, Fang YZ (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 375: 287-293.Google Scholar
  18. Chambers G, Carroll C, Farrell GF, Dalton AB, McNamara M, Panhuis MIH, Byrne HJ (2003) Characterization of the interaction of gamma cyclodextrin with single-walled carbon nano-tubes. Nano Lett. 3: 843-846.Google Scholar
  19. Chen J, Dyer MJ, Yu MF (2001a) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123: 6201-6202.Google Scholar
  20. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001b) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123: 3838-3839.Google Scholar
  21. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic bio-sensors. Proc. Natl. Acad. Sci. USA 100: 4984-4989.Google Scholar
  22. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence micros-copy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126: 15638-15639.Google Scholar
  23. Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 7: 861-867.Google Scholar
  24. Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155: 73-85.Google Scholar
  25. Dalton AB, Ortiz-Acevedo A, Zorbas V, Brunner E, Sampson WM, Collins L, Razal JM, Yoshida MM, Baughman RH, Draper RK, Musselman IH, Jose-Yacaman M, Dieckmann GR (2004) Hierarchical self-assembly of peptide-coated carbon nanotubes. Adv. Funct. Mater. 14: 1147-1151.Google Scholar
  26. Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler PJ, Sloan J, Xavier AV, Tsang SC (1998) The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta 272: 261-266.Google Scholar
  27. Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Munoz E, Musselman IH, Baughman RH, Draper RK (2003) Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125: 1770-1777.Google Scholar
  28. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FQF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nano-tubes and nano-onions on human skin fibroblast. Nano Lett. 5: 2448-2464.Google Scholar
  29. Dodziuk H, Ejchart A, Anczewski W, Ueda H, Krinichnaya E, Dolgonos G, Kutner W (2003) Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. Chem. Commun. 986-987.Google Scholar
  30. Dovbeshko GI, Repnytska OP, Obraztsova ED, Shtogun YV (2003) DNA interaction with single-walled carbon nanotubes: A SEIRA study. Chem. Phys. Lett. 372: 432-437.Google Scholar
  31. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the func-tionality of primary immune cells. Nano Lett. 6: 1522-1528.Google Scholar
  32. Duncan R (2003) The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2: 347-360.Google Scholar
  33. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13: 601-604.Google Scholar
  34. Fan J, Yudasaka M, Yuge R, Futaba DN, Hata K, Iijima S (2007) Efficiency of C-60 incorporation in and release from single-wall carbon nanotubes depending on their diameters. Carbon 45: 722-726.Google Scholar
  35. Gao HJ, Kong Y (2004) Simulation of DNA-nanotube interactions. Annu. Rev. Mater. Res. 34: 123-150.Google Scholar
  36. Gao HJ, Kong Y, Cui DX, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3: 471-473.Google Scholar
  37. Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, Yan XY (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7: 239-242.Google Scholar
  38. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 3050-3051.Google Scholar
  39. Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ, Coleman JN (2006) Debundling of single-walled nanotubes by dilution: Observation of large populations of indi-vidual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110: 15708-15718.Google Scholar
  40. Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125: 9006-9007.Google Scholar
  41. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263: 1600-1603.Google Scholar
  42. Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 34: 579-583.Google Scholar
  43. Guo ML, Chen JH, Liu DY, Nie LH, Yao SZ (2004) Electrochemical characteristics of the immo-bilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry 62: 29-35.Google Scholar
  44. Guo ZJ, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 10: 701-703.Google Scholar
  45. Hazani M, Naaman R, Hennrich F, Kappes MM (2003) Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett. 3: 153-155.Google Scholar
  46. Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115: 1125-1131.CrossRefGoogle Scholar
  47. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17: 2793-2799.Google Scholar
  48. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311: 508-511.Google Scholar
  49. Holzinger M, Abraha J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 125: 8566-8580.Google Scholar
  50. Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2: 311-314.Google Scholar
  51. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363: 603-605.Google Scholar
  52. Ikeda A, Hayashi K, Konishi T, Kikuchi J (2004) Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibra-tion milling technique. Chem. Commun. 1334-1335.Google Scholar
  53. Ito T, Sun L, Crooks RM (2003) Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem. Commun. 7: 1482-1483.Google Scholar
  54. Jiang KY, Schadler LS, Siegel RW, Zhang XJ, Zhang HF, Terrones M (2004) Protein immobiliza-tion on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 14: 37-39.Google Scholar
  55. Johnson RR, Johnson ATC, Klein ML (2008) Probing the Structure of DNA-Carbon Nanotube Hybrids with Molecular Dynamics. Nano Lett. 8: 69-75.Google Scholar
  56. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165: 88-100.Google Scholar
  57. Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127: 6021-6026.Google Scholar
  58. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126: 6850-6851.Google Scholar
  59. Kam NWS, Liu Z, Dai HJ (2005a) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127: 12492-12493.Google Scholar
  60. Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005b) Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102: 11600-11605.Google Scholar
  61. Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45: 577-581.Google Scholar
  62. Kateb B, Van Handel M, Zhang LY, Bronikowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: Possible application in immunotherapy of brain tumors. NeuroImage 37: S9-S17.Google Scholar
  63. Kim OK, Je JT, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ (2003) Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 125: 4426-4427.Google Scholar
  64. Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, Shvedova AA (2007) Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. J. Toxicol. Environ. Health A 70: 2071-2079.Google Scholar
  65. Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immuno-genicity of DNA vaccines. J. Immunol. 158: 3635-3639.Google Scholar
  66. Klinman DM, Verthelyi D, Takeshita F, Ishii KJ (1999) Immune recognition of foreign DNA: A cure for bioterrorism? Immunity 11: 123-129.Google Scholar
  67. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nano-tubes is independent of functional group and cell type. Nat. Nanotechnol. 2: 108-113.Google Scholar
  68. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20: 709-760.Google Scholar
  69. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549.Google Scholar
  70. Lacerda L, Bianco A, Prato M, Kostarelos K (2006a) Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug. Deliv. Rev. 58: 1460-1470.Google Scholar
  71. Lacerda L, Pastorin G, Wu W, Prato M, Bianco A, Kostarelos K (2006b) Luminescence of func-tionalized carbon nanotubes as a tool to monitor bundle formation and dissociation in water: The effect of plasmid-DNA complexation. Adv. Funct. Mater. 16: 1839-1846.Google Scholar
  72. Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, Frederik P, Herrero MA, Li S, Bao A, Emfietzoglou D, Mather S, Phillips WT, Prato M, Bianco A, Goins B, Kostarelos K (2008) Dynamic imaging of functionalized multi-walled carbon nanotube sys-temic circulation and urinary excretion. Adv. Mater. 20: 225-230.Google Scholar
  73. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77: 126-134.Google Scholar
  74. Langer R (1998) Drug delivery and targeting. Nature 392: 5-10.Google Scholar
  75. Lavan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat. Rev. Drug Discov. 1: 77-84.Google Scholar
  76. Lavan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21: 1184-1191.Google Scholar
  77. Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nano-tubes. J. Am. Chem. Soc. 127: 14-15.Google Scholar
  78. Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4: 191-195.Google Scholar
  79. Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobiliza-tion and efficient delivery of DNA. Angew. Chem. Int. Ed. 44: 4782-4785.Google Scholar
  80. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007a) Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 1: 50-56.Google Scholar
  81. Liu Z, Winters M, Holodniy M, Dai HJ (2007b) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46: 2023-2027.Google Scholar
  82. Lu G, Maragakis P, Kaxiras E (2005) Carbon nanotube interaction with DNA. Nano Lett. 5: 897-900.Google Scholar
  83. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett. 5: 1676-1684.Google Scholar
  84. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2: 29-37.Google Scholar
  85. Matyshevska OP, Karlash AY, Shtogun YV, Benilov A, Kirgizov Y, Gorchinskyy KO, Buzaneva EV, Prylutskyy YI, Scharff P (2001) Self-organizing DNA/carbon nanotube molecular films. Mater. Sci. Eng. C 15: 249-252.Google Scholar
  86. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiola-beled carbon nanotubes. J. Nucl. Med. 48: 1180-1189.Google Scholar
  87. Moghaddam MJ, Taylor S, Gao M, Huang SM, Dai LM, Mccall MJ (2004) Highly efficient bind-ing of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4: 89-93.Google Scholar
  88. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155: 377-384.Google Scholar
  89. Moulton SE, Minett AI, Murphy R, Ryan KP, McCarthy D, Coleman JN, Blau WJ, Wallace GG (2005) Biomolecules as selective dispersants for carbon nanotubes. Carbon 43: 1879-1884.Google Scholar
  90. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207: 221-231.Google Scholar
  91. Muller J, Decordier I, Hoet P, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29: 427-433.Google Scholar
  92. Murthy N, Xu MC, Schuck S, Kunisawa J, Shastri N, Frechet JMJ (2003) A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proc. Natl. Acad. Sci. USA 100: 4995-5000.Google Scholar
  93. Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA (2004) Strategies for enhancing the immunos-timulatory effects of CpG oligodeoxynucleotides. J. Contr. Rel. 97: 1-17.Google Scholar
  94. Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K (2003) DNA dissolves single-walled carbon nanotubes in water. Chem. Lett. 32: 456-457.Google Scholar
  95. Nepal D, Sohn JI, Aicher WK, Lee S, Geckeler KE (2005) Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Biomacromolecules 6: 2919-2922.Google Scholar
  96. Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M (2002) Preparation of nucleic acid functionalized carbon nanotube Arrays. Nano Lett. 2: 1079-1081.Google Scholar
  97. Nimmagadda A, Thurston K, Nollert MU, McFetridge PSF (2006) Chemical modification of SWNT alters in vitro cell-SWNT interactions. J. Biomed. Mater. Res. A 76A: 614-625.Google Scholar
  98. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A (2003a) Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125: 6160-6164.Google Scholar
  99. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003b) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10: 961-966.Google Scholar
  100. Pantarotto D, Briand JP, Prato M, Bianco A (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16-17.Google Scholar
  101. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004b) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43: 5242-5246.Google Scholar
  102. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182-1184.Google Scholar
  103. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43: 2113-2117.Google Scholar
  104. Pignatello R, Toth I, Puglisi G (2001) Structural effects of lipophilic methotrexate conjugates on model phospholipid biomembranes. Thermochim. Acta 380: 255-264.Google Scholar
  105. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and dis-covery. Acc. Chem. Res. 41: 60-68.Google Scholar
  106. Rajendra J, Rodger A (2005) The binding of single-stranded DNA and PNA to single-walled car-bon nanotubes probed by flow linear dichroism. Chem. Eur. J. 11: 4841-4847.Google Scholar
  107. Rajendra J, Baxendale M, Rap LGD, Rodger A (2004) Flow linear dichroism to probe binding of aromatic molecules and DNA to single-walled carbon nanotubes. J. Am. Chem. Soc. 126: 11182-11188.Google Scholar
  108. Rao R, Lee J, Lu Q, Keskar G, Freedman KO, Floyd WC, Rao AM, Ke PC (2004) Single-mole-cule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nano-tubes. Appl. Phys. Lett. 85: 4228-4230.Google Scholar
  109. Rojas-Chapana J, Troszczynska J, Firkowska I, Morsczeck C, Giersig M (2005) Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab Chip 5: 536-539.Google Scholar
  110. Savic R, Luo LB, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300: 615-618.Google Scholar
  111. Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161: 135-142.Google Scholar
  112. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66: 1909-1926.Google Scholar
  113. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289: L698-L708.Google Scholar
  114. Simon F, Peterlik H, Pfeiffer R, Bernardi J, Kuzmany H (2007) Fullerene release from the inside of carbon nanotubes: A possible route toward drug delivery. Chem. Phys. Lett. 445: 288-292.Google Scholar
  115. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127: 4388-4396.Google Scholar
  116. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nano-tube radiotracers. Proc. Natl. Acad. Sci. USA 103: 3357-3362.Google Scholar
  117. Sirotnak FM, Moccio DM, Kelleher LE, Goutas LJ (1981) Relative frequency and kinetic proper-ties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res. 41: 4447-4452.Google Scholar
  118. Special issue on Carbon Nanotubes (2002) Acc. Chem. Res. 35: 997-1113.Google Scholar
  119. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew. Chem. Int. Ed. 41: 2508-2512.Google Scholar
  120. Szlinder-Richert J, Cybulska B, Grzybowska J, Bolard J, Borowski E (2004) Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Il Farmaco 59: 289-296.Google Scholar
  121. Taft BJ, Lazareck AD, Withey GD, Yin AJ, Xu JM, Kelley SO (2004) Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. J. Am. Chem. Soc. 126: 12750-12751.Google Scholar
  122. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev. 106: 1105-1136.Google Scholar
  123. Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem. Eur. J. 9: 4001-4008.Google Scholar
  124. Tsang SC, Guo ZJ, Chen YK, Green MLH, Hill HAO, Hambley TW, Sadler PJ (1997) Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angew. Chem. Int. Ed. Engl. 36: 2198-2200.Google Scholar
  125. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: Risk assessment of nano-particles. Toxicol. Sci. 89: 42-50.Google Scholar
  126. Valenti LE, Fiorito PA, Garcia CD, Giacomelli CE (2007) The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci. 307: 349-356.Google Scholar
  127. Varde NK, Pack DW (2004) Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 4: 35-51.Google Scholar
  128. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26: 7154-7163.Google Scholar
  129. Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126: 3010-3011.Google Scholar
  130. Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nano-tubes. Nature Mater. 2: 196-200.Google Scholar
  131. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77: 117-125.Google Scholar
  132. Wick P, Manser P, Limbach LK, ttlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168: 121-131.Google Scholar
  133. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology -Carbon nanotubes with DNA recognition. Nature 420: 761.Google Scholar
  134. Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong LW, Fischer AB, Gudibande SR, Jamieson SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ (2003) Carbon nanotube-based biosensor. Adv. Mater. 15: 1184-1187.Google Scholar
  135. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44: 6358-6362.Google Scholar
  136. Xie SS, Chang BH, Li WZ, Pan ZW, Sun LF, Mao JM, Chen XH, Qian LX, Zhou WY (1999) Synthesis and characterization of aligned carbon nanotube arrays. Adv. Mater. 11: 1135.Google Scholar
  137. Xie YH, Soh AK (2005) Investigation of non-covalent association of single-walled carbon nano-tube with amylose by molecular dynamics simulation. Mater. Lett. 59: 971-975.Google Scholar
  138. Yim TJ, Liu JW, Lu Y, Kane RS, Dordick JS (2005) Highly active and stable DNAzyme - Carbon nanotube hybrids. J. Am. Chem. Soc. 127: 12200-12201.Google Scholar
  139. Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neu-tron capture therapy drug delivery. J. Am. Chem. Soc. 127: 9875-9880.Google Scholar
  140. Zhang MG, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76: 5045-5050.Google Scholar
  141. Zhang Q, Zhang L, Li JH (2007) DNA-hemoglobin-multiwalls carbon nanotube hybrid material with sandwich structure: Preparation, characterization, and application in bioelectrochemistry. J. Phys. Chem. C 111: 8655-8660.Google Scholar
  142. Zhang ZH, Yang XY, Zhang Y, Zeng B, Wang ZJ, Zhu TH, Roden RBS, Chen YS, Yang RC (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12: 4933-4939.Google Scholar
  143. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2: 338-342.Google Scholar
  144. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003b) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302: 1545-1548.Google Scholar
  145. Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, Baughman RH, Jose-Yacaman M, Musselman IH (2004) Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc. 126: 7222-7227.Google Scholar
  146. Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 10: 211-223.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Alberto Bianco
    • 1
  • Raquel Sainz
    • 1
  • Shouping Li
    • 1
  • Hélène Dumortier
    • 1
  • Lara Lacerda
    • 2
  • Kostas Kostarelos
    • 2
  • Silvia Giordani
    • 3
    • 4
  • Maurizio Prato
    • 4
  1. 1.Laboratoire d’Immunologie et Chimie ThérapeutiquesCNRS, Institut de Biologie Moléculaire et CellulaireStrasbourgFrance
  2. 2.Nanomedicine Laboratory, Centre for Drug Delivery Research, The School of PharmacyUniversity of LondonLondonUK
  3. 3.School of Chemistry/Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College Dublin, College GreenDublin 2Ireland
  4. 4.Dipartimento di Scienze FarmaceuticheUniversità di TriesteTriesteItaly

Personalised recommendations