Cellular Nanotubes: Membrane Channels for Intercellular Communication

  • Raquel Negrão Carvalho
  • Hans-Hermann GerdesEmail author
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


Cells of living organism communicate in many different ways with their neighbor cells. This is accomplished by, for example, the secretion of signaling molecules or the formation of proteinaceous pores, referred to as gap junctions, between physically attached cells. In addition to these long-known communication routes, a novel mechanism was discovered recently based on de novo formation of membrane nanotubes, which facilitate the delivery of biological molecules and organelles between cells. Interestingly, chemists have been developing artificial carbon-based nanostructures with a similar architecture for communication with cells and delivery of clinically interesting drugs. Along with every new developed technology involving the use of foreign compounds in biomedical applications, concerns emerge on the biocompatibility and toxicity at the cellular level. This is particularly true for nano-sized materials, whose effects are yet to be thoroughly determined in vivo. Biocompatibilization of synthetic compounds may be done more efficiently if naturally occurring structures are taken as models.


Tunneling nanotube TNT cellular communication intercellular transport 



Carbon nanotube


Filamentous actin


Tunneling nanotube


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artyukhin AB, Shestakov A, Harper J, Bakajin O, Stroeve P, Noy A (2005) Functional one-dimensional lipid bilayers on carbon nanotube templates. J. Am. Chem. Soc. 127: 7538-7542. CrossRefGoogle Scholar
  2. Baluška F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell theory revised. Ann. Bot. (Lond) 94: 9-32.CrossRefGoogle Scholar
  3. Berk DA, Clark A, Jr., Hochmuth RM (1992) Analysis of lateral diffusion from a spherical cell surface to a tubular projection. Biophys. J. 61: 1-8.CrossRefGoogle Scholar
  4. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections betweein animal cells. Nat. Rev. Mol. Cell Biol. 9: 431-436.CrossRefGoogle Scholar
  5. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100: 303-315.CrossRefGoogle Scholar
  6. Evans E, Bowman H, Leung A, Needham D, Tirrell D (1996) Biomembrane templates for nanos-cale conduits and networks. Science 273: 933-935.CrossRefGoogle Scholar
  7. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155: 193-200.CrossRefGoogle Scholar
  8. Faix J, Rottner K (2006) The making of filopodia. Curr. Opin. Cell Biol. 18: 18-25.CrossRefGoogle Scholar
  9. Gerdes H-H, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Lett. 581: 2194-2201. CrossRefGoogle Scholar
  10. Gerdes H-H, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. doi. 10.1016/ Scholar
  11. Gurke S, Barroso JF, Gerdes H-H (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem. Cell Biol. 129: 539-550.CrossRefGoogle Scholar
  12. Kam NW, Dai H (2005) Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127: 6021-6026.CrossRefGoogle Scholar
  13. Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew Chem. Int. Ed. Engl. 45: 577-581. CrossRefGoogle Scholar
  14. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biologi-cal transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102: 11600-11605.CrossRefGoogle Scholar
  15. Karlsson A, Karlsson R, Karlsson M, Cans AS, Strömberg A, Ryttsén F, Orwar O (2001) Networks of nanotubes and containers. Nature 409: 150-152.CrossRefGoogle Scholar
  16. Karlsson M, Sott K, Davidson M, Cans AS, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc. Natl. Acad. Sci. USA 99: 11573-11578.CrossRefGoogle Scholar
  17. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758: 404-412.CrossRefGoogle Scholar
  18. Koster G, VanDuijn M, Hofs B, Dogterom M (2003) Membrane tube formation from giant vesi-cles by dynamic association of motor proteins. Proc. Natl. Acad. Sci. USA 100: 15583-15588.CrossRefGoogle Scholar
  19. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: A novel mechanism for cell fate changes? Circ. Res. 96: 1039-1041.Google Scholar
  20. Li Z, Anvari B, Takashima M, Brecht P, Torres JH, Brownell WE (2002) Membrane tether forma-tion from outer hair cells with optical tweezers. Biophys. J. 82: 1386-1395. CrossRefGoogle Scholar
  21. Lobovkina T, Dommersnes P, Joanny JF, Hurtig J, Orwar O (2006) Zipper dynamics of surfactant nanotube Y junctions. Phys. Rev. Lett. 97: 188105.CrossRefGoogle Scholar
  22. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiola-beled carbon nanotubes. J. Nucl. Med. 48: 1180-1189.CrossRefGoogle Scholar
  23. Önfelt B, Davis DM (2004) Can membrane nanotubes facilitate communication between immune cells? Biochem. Soc. Trans. 32: 676-678.CrossRefGoogle Scholar
  24. Önfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: Membrane nanotubes connect immune cells. J. Immunol. 173: 1511-1513.Google Scholar
  25. Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177: 8476-8483.Google Scholar
  26. Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb): 16-17.Google Scholar
  27. Pontes B, Viana NB, Campanati L, Farina M, Neto VM, Nussenzveig HM (2007) Structure and elastic properties of tunneling nanotubes. Eur. Biophys. J. [Epub ahead of print] Google Scholar
  28. Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane ten-sion. Biophys. J. 77: 1992-2002.CrossRefGoogle Scholar
  29. Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, Jackson AP, Gay NJ, O’Kane CJ (2001) Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15: 2967-2979.CrossRefGoogle Scholar
  30. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc. Natl. Acad. Sci. USA 99: 5394-5399.CrossRefGoogle Scholar
  31. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H (2004) Nanotubular highways for intercellular organelle transport. Science 303: 1007-1010.CrossRefGoogle Scholar
  32. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell. Biol. 9: 310-315.CrossRefGoogle Scholar
  33. Sun M, Graham JS, Hegedüs B, Marga F, Zhang Y, Forgacs G, Grandbois M(2005) Multiple membrane tethers probed by atomic force microscopy. Biophys. J.89: 4320-4329.Google Scholar
  34. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10: 211-219.CrossRefGoogle Scholar
  35. Vidulescu C, Clejan S, O’Connor KC (2004) Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J. Cell. Mol. Med. 8: 388-396.CrossRefGoogle Scholar
  36. Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23: 309-318.CrossRefGoogle Scholar
  37. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem. Int. Ed. Engl. 44: 6358-6362.CrossRefGoogle Scholar
  38. Yamashita Y, Masum SM, Tanaka T, Tamba Y, Yamazaki M (2002) Shape changes of giant unila-mellar vesicles of phosphatidylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18: 9638-9641.CrossRefGoogle Scholar
  39. Yin Y, Yin J (2006) Geometric conservation laws for cells or vesicles with membrane nanotubes or singular points. J. Nanobiotechnol. 4: 6.CrossRefGoogle Scholar
  40. Zhang YB, Kanungo M, Ho AJ, Freimuth P, van der Lelie D, Chen M, Khamis SM, Datta SS, Johnson AT, Misewich JA, Wong SS (2007) Functionalized carbon nanotubes for detecting viral proteins. Nano Lett. 7: 3086-3091.CrossRefGoogle Scholar
  41. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J. Cell Sci. 118: 3695-3703.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of BiomedicineUniversity of BergenBergenNorway

Personalised recommendations