New Approach to QSPR Modeling of Fullerene C60 Solubility in Organic Solvents: An Application of SMILES-Based Optimal Descriptors

  • A. A. ToropovEmail author
  • B. F. Rasulev
  • D. Leszczynska
  • J. Leszczynski
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


Optimal descriptors, calculated with simplified molecular input line entry system (SMILES), have been used for modeling solubility of fullerene C60 in organic solvents. Local and global attributes of the SMILES have been involved in the modeling algorithm. Local attributes represent symbols, which are images of chemical elements (“O”, “N”, “Cl”, “Br”, etc) or chemical environment (double bonds, i.e., the “ = ”; triple bonds, i.e., “#”, etc.) Global SMILES attributes are expressed as number of a given chemical element in given SMILES as well as superposition of chemical elements (for instance, SMILES contains both “Cl” and “Br”). Statistical characteristics of the derived model are given by n = 92, r 2 = 0.8865, q 2 = 0.8807, s = 0.363, F = 703 (training set); and n = 30, r 2 = 0.9069, q 2 = 0.8932, s = 0.399, F = 273 (test set).


Optimal descriptor QSPR SMILES Solubility fullerene C60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basak SC, Mills DR, Balaban AT, Gute BD (2001) Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: A hierarchical QSAR approach. J. Chem. Inf. Comput. Sci. 41: 671-678. Google Scholar
  2. Bologa C, Allu TK, Olah M, Kappler MA, Opre TI (2005) Descriptor collision and confusion: Toward the design of descriptors to mask chemical structures. J. Comp-Aid. Mol. Des. 19: 625-635.CrossRefGoogle Scholar
  3. Castro EA, Toropov AA, Nesterova AI, Nabiev OM (2004) QSPR modeling aqueous solubility of polychlorinated biphenyls by optimization of correlation weights of local and global graph invariants. CEJC 2: 500-523. Google Scholar
  4. Colbert DT, Smalley RE (1999) Fullerene nanotubes for molecular electronics. Trend. Biotechnol. 17: 46-50. CrossRefGoogle Scholar
  5. Danauskas SM, Jurs PC (2001) Prediction of C60 solubilities from solvent molecular structures. J. Chem. Inf. Comput. Sci. 41: 419-424. Google Scholar
  6. Faulon J-L, Carla J (2003) Churchwell the signature molecular descriptor. 2. Enumerating mole-cules from their extended valence sequences. J. Chem. Inf. Comput. Sci. 43: 721-734. Google Scholar
  7. Faulon J-L, Collins MJ, Carr JR (2004) The Signature molecular descriptor. 4. canonizing mole-cules using extended valence sequences. J. Chem. Inf. Comput. Sci. 44: 427-436. Google Scholar
  8. Franco A, Hansen SF, Olsen SI, Butti L (2007) Limits and prospects of the incremental approach and the European legislation on the management of risks related to nanomaterials. Regul. Toxicol. Pharm. 48: 171-183. CrossRefGoogle Scholar
  9. Huanxiang L, Xiaojun Y, Ruisheng Zh, Mancang L, Zhide H, Botao F (2005) Accurate quantita-tive structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J. Phys. Chem. Sect B. 109: 20565-20571. Google Scholar
  10. Kiss IZ, Mandi G, Beck MT (2000) Artificial neural network approach to predict the solubility of C60 in various solvents. J. Phys. Chem. Sect A 104: 8081-8088. CrossRefGoogle Scholar
  11. Kurup A (2003) C-QSAR: A database of 18,000 QSARs and associated biological and physical data. J. Comp-Aid. Mol. Des. 17: 187-196. CrossRefGoogle Scholar
  12. Olah M, Bologa C, Opre TI (2004) An automated PLS search for biologically relevant QSAR descriptors. J. Comp-Aid. Mol. Des. 18: 437-449. CrossRefGoogle Scholar
  13. Prylutskyy Yu. I, Yashchuk VM, Kushnir KM, Golub AA, Kudrenko VA, Prylutska SV, Grynyuk II, Buzaneva EV, Scharff P, Braun T, Matyshevska OP (2003) Biophysical studies of fullerene-based composite for bio-nanotechnology.  Mater. Sci. Eng. Sect C 23: 109-111. Google Scholar
  14. Randic M, Basak SC (1999) Optimal molecular descriptors based on weighted path numbers. J. Chem. Inf. Comput. Sci. 39: 261-266. Google Scholar
  15. Randic M, Basak SC (2001) New descriptor for structure-property and structure-activity correlations.  J. Chem. Inf. Comput. Sci. 41: 650-656. Google Scholar
  16. Randic M, Pompe M (2001a) The variable connectivity index 1χf versus the traditional molecular descriptors: A comparative study of 1χf against descriptors of CODESSA. J. Chem. Inf. Comput. Sci. 41: 631-638. Google Scholar
  17. Randic M, Pompe M (2001b) The variable molecular descriptors based on distance related matri-ces. J. Chem. Inf. Comput. Sci. 41: 575-581. Google Scholar
  18. Sivaraman N, Srinivasan TG, Vasudeva PR (2001) QSPR modeling for solubility of fullerene (C60) in organic solvents. J. Chem. Inf. Comput. Sci. 41: 1067-1074. Google Scholar
  19. Toropov AA, Benfenati E (2004) QSAR modelling of aldehyde toxicity against a protozoan, Tetrahymena pyriformis by optimization of correlation weights of nearest neighboring codes. J. Mol. Struct. (Theochem) 679: 225-228. CrossRefGoogle Scholar
  20. Toropov AA, Benfenati E (2006a) QSAR models of quail dietary toxicity based on the graph of atomic orbitals. Bioorg. Med. Chem. Lett. 16: 1941-1943. CrossRefGoogle Scholar
  21. Toropov AA, Benfenati E (2006b) QSAR models for Daphnia toxicity of pesticides based on combinations of topological parameters of molecular structures Bioorg. Med. Chem. 14: 2779-2788. CrossRefGoogle Scholar
  22. Toropov AA, Benfenati E (2006c) Correlation weighting of valence shells in QSAR analysis of toxicity. Bioorg. Med. Chem. 14: 3923-3928. CrossRefGoogle Scholar
  23. Toropov AA, Benfenati E (2007a) Optimisation of correlation weights of SMILES invariants for modelling oral quail toxicity Eur. J. Med. Chem. 42: 606-613. CrossRefGoogle Scholar
  24. Toropov AA, Benfenati E (2007b) SMILES as an alternative to the graph in QSAR modelling of bee toxicity. Comput. Biol. Chem. 31: 57-60. CrossRefGoogle Scholar
  25. Toropov AA, Leszczynski J (2006) A new approach to the characterization of nanomaterials: Predicting young’s modulus by correlation weighting of nanomaterials codes. Chem. Phys. Lett. 433, 29: 125-129.CrossRefGoogle Scholar
  26. Toropov AA, Roy K (2004) QSPR modeling of lipid-water partition coefficient by optimization of correlation weights of local graph invariants. J. Chem. Inf. Comput. Sci. 44: 179-186. Google Scholar
  27. Toropov AA, Schultz TW (2003) Prediction of aquatic toxicity: Use of optimization of correlation weights of local graph invariants. J. Chem. Inf. Comput. Sci. 43: 560-567. Google Scholar
  28. Toropov AA, Toropova AP (2001) Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants. J. Mol. Struct. (Theochem) 538: 287-293. CrossRefGoogle Scholar
  29. Toropov AA, Toropova AP (2002) QSPR modeling of complex stability by optimization of corre-lation weights of the hydrogen bond index and the local graph invariants. Russ. J. Coord. Chem. 28: 877-880. CrossRefGoogle Scholar
  30. Toropov A, Toropova A (2004) Nearest neighboring code and hydrogen bond index in labeled hydrogen-filled graph and graph of atomic orbitals: Application to model of normal boiling points of haloalkanes. J. Mol. Struct. (Theochem) 711: 173-183. CrossRefGoogle Scholar
  31. Toropov AA, Toropova AP, Nesterova AI, Nabiev OM (2004a) Prediction of alkane enthalpies by means of correlation weighting of Morgan extended connectivity in molecular graphs. Chem. Phys. Lett. 384: 357-363. CrossRefGoogle Scholar
  32. Toropov AA, Toropova AP, Nesterova AI, Nabiev OM (2004b) QSPR modeling of complex stabil-ity by correlation weighing of the topological and chemical invariants of molecular graphs. Russ. J. Coord. Chem. 30: 611-617. CrossRefGoogle Scholar
  33. Toropov AA, Kudyshkin VO, Voropaeva NL, Ruban IN, Rashidova S.Sh. (2004c) QSPR modeling of the reactivity parameters of monomers in radical copolymerizations J. Struct. Chem. 45: 945-950. CrossRefGoogle Scholar
  34. Toropov AA, Toropova AP, Mukhamedzhanova D, Gutman I (2005a) Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure-property relationships (QSPR). Indian J. Chem. Sect A. 44: 1545-1552. Google Scholar
  35. Toropov AA, Toropova AP, Gutman I (2005b) Comparison of QSPR models based on hydrogen-filled graphs and on graphs of atomic orbitals. Croat. Chem. Acta 78: 503-509. Google Scholar
  36. Toropov AA, Leszczynska D, Leszczynski J (2007a) QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES Chem. Phys. Lett. 441: 119-122. Google Scholar
  37. Toropov AA, Leszczynska D, Leszczynski J (2007b) Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector Comp. Biol. Chem. 31: 127-128. CrossRefGoogle Scholar
  38. Vidal D, Thormann M, Pons M (2005) LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities. J. Chem. Inf. Model. 45: 386-393. CrossRefGoogle Scholar
  39. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28: 31-36. Google Scholar
  40. Weininger D (1990) SMILES. 3. DEPICT. Graphical depiction of chemical structures. J. Chem. Inf. Comput. Sci. 30: 237-243. Google Scholar
  41. Weininger D, Weininger A, Weininger L (1989) SMILES. 2. Algorithm for generation of unique SMILES notation, J. Chem. Inf. Comput. Sci. 29: 97-101. Google Scholar
  42. Wood J (2004) C60 boosts performance: Nanotech. Mat. Today 7: 12-13. Google Scholar
  43. Wiener H (1947a) Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69: 17-20. CrossRefGoogle Scholar
  44. Wiener H (1947b) Correlation of heats of isomerization, and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J. Am. Chem. Soc. 69: 2636-2638. CrossRefGoogle Scholar
  45. Wiener H (1948a) Relation of the physical properties of the isomeric alkanes to molecular struc-ture. Surface tension, specific dispersion, and critical solution temperature in aniline. J. Phys. Chem. 52: 1082-1089. Google Scholar
  46. Wiener H (1948b) Vapor pressure-temperature relationships among the branched paraffin hydro-carbons. J. Phys. Chem. 52: 425-430. CrossRefGoogle Scholar
  47. Zenkevich I, Moeder M, Koeller G, Schrader S (2004) Using new structurally related additive schemes in the precalculation of gas chromatographic retention indices of polychlorinated hydroxybiphenyls on HP-5 stationary phase. J. Chromatogr. A 1025: 227-236.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • A. A. Toropov
    • 1
    Email author
  • B. F. Rasulev
    • 1
  • D. Leszczynska
    • 2
  • J. Leszczynski
    • 1
  1. 1.Department of ChemistryComputational Center for Molecular Structure and InteractionsUSA
  2. 2.Department of Civil and Environmental EngineeringJackson State UniversityJacksonUSA

Personalised recommendations