Advertisement

Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues

  • Tae-Joon Park
  • Jeffrey G. Martin
  • Robert J. Linhardt
Chapter
  • 1.4k Downloads
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)

Abstract

Since their discovery in 1991, carbon nanotubes (CNTs) have been studied for their application as diagnostic tools, chemical sensors, and vectors for drug delivery. Carbon nanotubes are of great interest because of their unique array of physical and chemical properties, including their high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, high thermal conductivity, and high surface area. The unique properties of carbon nanotubes also raise substantial concern about their potentially toxic effects on the environment and human health. This review focuses on the current pharmacological applications and emerging toxicology issues of biocompatible carbon nanotubes. Carbon nanotubes as agents for drug delivery, cancer therapeutics, along with their in vivo challenges and potential toxicity are discussed.

Keywords

carbon nanotubes biomaterials biocompatibility toxicity nanomaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787-1799.CrossRefGoogle Scholar
  2. Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J (1995) Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. Eur J. Pharm Biopharm 41:44-48.Google Scholar
  3. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325-328.CrossRefGoogle Scholar
  4. Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67-74.CrossRefGoogle Scholar
  5. Arthursson P, Edman P, Laakso T, Sjöholm I (1984) Characterization of polyacryl starch microparticles suitable as carrier for proteins and drugs. J Pharm Sci 73:1507-1513.CrossRefGoogle Scholar
  6. Arthursson P, Edman P, Sjöholm I (1985) Biodegradable microspheres II: immune response to a heterologous and an autologous protein entrapped in polyacryl starch microparticles. J Pharmacol Exp Ther 255-260.Google Scholar
  7. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. LANCET 367:1241-1246.CrossRefGoogle Scholar
  8. Badaire S, Zakri C, Maugey M, Derre A, Barisci JN, Wallace G, Poulin P (2005) Liquid crystals of DNA-stabilized carbon nanotubes. Adv Mater 17:1673-1676.CrossRefGoogle Scholar
  9. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239-1267.CrossRefGoogle Scholar
  10. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2:25-28.CrossRefGoogle Scholar
  11. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493-498.CrossRefGoogle Scholar
  12. Becker C, Jakse G (2007) Stem cells for regeneration of urological structures. Eur Urol 51:1217-1228.CrossRefGoogle Scholar
  13. Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3-17.CrossRefGoogle Scholar
  14. Bell TE (2006) Understanding Risk Assessment of Nanotechnology. Available at http://nano.gov/ Understanding_Risk_Assessment.pdfGoogle Scholar
  15. Bertling WM, Gareis M, Paspaleeva V, Zimmer A, Kreuter J, Nürnberg E, Harrer P (1991) Use of liposomes, viral capsids, and nanoparticles as DNA carriers. Biotechnol Appl Biochem 13:390-405.Google Scholar
  16. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765-1768.CrossRefGoogle Scholar
  17. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 2005:571-577.CrossRefGoogle Scholar
  18. Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763-1766.CrossRefGoogle Scholar
  19. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121-126.CrossRefGoogle Scholar
  20. Bottini M, Magrini A, Dawson MI, Rosato N, Bergamaschi A, Mustelin T (2007) Noncovalently silylated carbon nanotubes decorated with quantum dots. Carbon 45:673-676.CrossRefGoogle Scholar
  21. Branemark PI, Breine U, Johansson B, Roylance PJ, Röckert H, Yoffey JM (1964) Regeneration of bone marrow. Acta Anat 59:1-46.CrossRefGoogle Scholar
  22. Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, Vassal G (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928-936.CrossRefGoogle Scholar
  23. Cai D, Mataraza JM, Qin ZH, Huang ZP, Huang JY, Chiles TC, Carnahan D, Kempa K, Ren ZF (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449-454.CrossRefGoogle Scholar
  24. Cai D, Doughty CA, Potocky TB, Dufort FJ, Huang Z, Blair D, Kempa K, Ren ZF, Chiles TC (2007) Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes. Nanotechnology 18: Art. No. 365101.Google Scholar
  25. Capila I, Linhardt RJ (2002) Heparin - Protein interactions. Angew Chem Int Ed 41:391-412.CrossRefGoogle Scholar
  26. Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15:467-480.CrossRefGoogle Scholar
  27. Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104:11901-11904.CrossRefGoogle Scholar
  28. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346-349.CrossRefGoogle Scholar
  29. Chen CC, Liu YC, Wu CH, Yeh CC, Su MT, Wu YC (2005) Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 17:404-407.CrossRefGoogle Scholar
  30. Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218-8222.CrossRefGoogle Scholar
  31. Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331-332.Google Scholar
  32. Cuenca AG, Jiang HB, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459-466.CrossRefGoogle Scholar
  33. Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73-85.CrossRefGoogle Scholar
  34. Cui DX, Tian FR, Coyer SR, Wang JC, Pan BF, Gao F, He R, Zhang YF (2007) Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. J Nanosci Nanotechnol 7:1639-1646.CrossRefGoogle Scholar
  35. Das M, Mardyani S, Chan WCW, Kumacheva E (2006) Biofunctionalized pH-responsive microgels for cancer cell targeting: rational design. Adv Mater 18:80-83.CrossRefGoogle Scholar
  36. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, Lyng FM (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438-448.CrossRefGoogle Scholar
  37. Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y (2007) Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419-1424.CrossRefGoogle Scholar
  38. Devalapally H, Shenoy D, Little S, Langer R, Amiji M (2007) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery ofGoogle Scholar
  39. hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 59:477-484.Google Scholar
  40. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727-728.CrossRefGoogle Scholar
  41. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5-22.CrossRefGoogle Scholar
  42. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522-1528.CrossRefGoogle Scholar
  43. Eberli D, Atala A(2006) Tissue engineering using adult stem cells. Method Enzymol 420:287-302.CrossRefGoogle Scholar
  44. Edman P, Ekman B, Sjöholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69:838-842.CrossRefGoogle Scholar
  45. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications. Carbon 39:1287-1297.CrossRefGoogle Scholar
  46. Eriksson E and Branemark PI (1996) Osseointegrated from the Perspective of the Plastic Surgeon. Plast Reconstr Surg 93:626-637.CrossRefGoogle Scholar
  47. Fan XB, Tan J, Zhang GL, Zhang FB (2007) Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 18: Art. No. 195103.Google Scholar
  48. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliver Rev 58:1456-1459.CrossRefGoogle Scholar
  49. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for Platinum(IV) anticancer drug design. J Am Chem Soc 129:8438-8439.CrossRefGoogle Scholar
  50. Ferrari M(2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161-171.CrossRefGoogle Scholar
  51. Fiorito S, Serafino A, Andreola F, Bernier P (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100-1105.CrossRefGoogle Scholar
  52. Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221:719-725.CrossRefGoogle Scholar
  53. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774-1785.CrossRefGoogle Scholar
  54. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61-69.CrossRefGoogle Scholar
  55. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Let 77:2421-2423.CrossRefGoogle Scholar
  56. Frimberger D, Lin HK, Kropp BP (2006) The use of tissue engineering and stem cells in bladder regeneration. Regen Med 1:425-435.CrossRefGoogle Scholar
  57. Gardner RL (2007) Stem cells and regenerative medicine: principles, prospects and problems.Google Scholar
  58. C R Biol 330:465-473.Google Scholar
  59. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2006) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17:391-397.CrossRefGoogle Scholar
  60. Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249-255.CrossRefGoogle Scholar
  61. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007)Google Scholar
  62. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 104:11298-11303.Google Scholar
  63. Glück T (1890) Die Invaginationsmethode der Osteo- und Arthroplastik. Berl Klin Wochenschr Circulation 33:752-757.Google Scholar
  64. Glück T (1891) Referat über die Durch das Moderne Chirurgische Experiment GewonnenenPositiven Resultaten, Betreffende die Naht und den Ersatz von Defekten HöhererGewebe, Sowie über die Verwerthung Resorbirbarer und Lebendiger Tampons in der Chirurgie. Arch Klin Chir 41:186.Google Scholar
  65. Goldberg M, Langer R, Jia XQ (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomat Sci-Polym E 18:241-268.CrossRefGoogle Scholar
  66. Goldman L, Coussens C (2005) Implications of Nanotechnology for Environmental Health Research, Roundtable on Environmental Health Sciences, Research and Medicine, The National Academies Press.Google Scholar
  67. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600-1603.CrossRefGoogle Scholar
  68. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564-1569.CrossRefGoogle Scholar
  69. Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34:579-583.CrossRefGoogle Scholar
  70. Gurny R (1981) Preliminary study of prolonged acting drug delivery system for the treatment of glaucoma. Pharm Acta Helv 56:130-132.Google Scholar
  71. Gurny R, Peppas NA, Harrington DD, Banker GS (1981) Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Devind Pharm 7:1-25.CrossRefGoogle Scholar
  72. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344-353.CrossRefGoogle Scholar
  73. Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125-1131.CrossRefGoogle Scholar
  74. Henrymichelland S, Alonso MJ, Andremont A, Maincen P, Sauzieres J, Couvreur P (1987) Attachment of antibiotics to nanoparticles-preparation, drug-release and antimicrobial activity in vitro. Int J Pharm 35:121-127.CrossRefGoogle Scholar
  75. Hilder TA, Hill JM (2007) Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotechnology 18: Art. No. 275704.Google Scholar
  76. Hillmyer MA (2007) Materials science - Micelles made to order. Science 317:604-605.CrossRefGoogle Scholar
  77. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles - known and unknown health risks. J Nanobiotechnol 2:1-15.CrossRefGoogle Scholar
  78. Huczko A, Lange H (2001) Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 9:247-250.Google Scholar
  79. Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P (2001) Physiological testing of carbon nanotubes: are they asbestos-like? Fullerene Sci Technol 9:251-254.Google Scholar
  80. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56-58.CrossRefGoogle Scholar
  81. Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123-1128.CrossRefGoogle Scholar
  82. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378-1383.CrossRefGoogle Scholar
  83. Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88-100.CrossRefGoogle Scholar
  84. Kam NWS, Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021-6026.CrossRefGoogle Scholar
  85. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850-6851.CrossRefGoogle Scholar
  86. Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional bio-logical transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600-11605.CrossRefGoogle Scholar
  87. Kam NWS, Liu ZA, Dai HJ (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577-581.CrossRefGoogle Scholar
  88. Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A (2007) Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7:786-794.CrossRefGoogle Scholar
  89. Kateb B, Van Handel M, Zhang L, Bronikowski MJ, Manohara H, Badie B (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 37:S9-S17.CrossRefGoogle Scholar
  90. Ke PC, Qiao R (2007) Carbon nanomaterials in biological systems. J Phys-Condens Mat 19: Art. No. 373101 SEP 19 2007.Google Scholar
  91. Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472-2485.CrossRefGoogle Scholar
  92. Kopf H, Joshi, RK, Soliva, M, Speiser, P (1976) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 1. Herstellung und Isolierung der Nanpartikel, Restmonomerenbestimmung, physikalischchemische. Daten Pharm Ind 38:281-284.Google Scholar
  93. Kopf H, Joshi, RK, Soliva, M, Speiser, P (1977) Studium der Mizellpolymerisation in Gegenwart niedermolekularer Arzneistoffe. 2. Bindungsartvon inkorporierten niedermolekularen Modellarzneistoffen an Nanopartikel auf Polyacrylamid-Basis. Restmonomerenbestimmung, physikalisch-chemische. Daten Pharm Ind 39:993-997.Google Scholar
  94. Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface 106:147-168.CrossRefGoogle Scholar
  95. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108-113.CrossRefGoogle Scholar
  96. Kramer PA (1974) Albumin microspheres as vehicles for achieving specificity in drug delivery. J Pharm Sci 63:1646-1647.CrossRefGoogle Scholar
  97. Kreuter J (2007) Nanoparticles - a historical perspective. Int J Pharm 331:1-10.CrossRefGoogle Scholar
  98. Kumar A, Murugesan S, Pushparaj V, Xie J, Soldano C, John G, Nalamasu O, Ajayan PM, Linhardt RJ (2007) Conducting organic-metallic composite submicrometer rods based on ionic liquids. Small 3:429-433.CrossRefGoogle Scholar
  99. Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16:674-680.CrossRefGoogle Scholar
  100. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliver Rev 58:1460-1470.CrossRefGoogle Scholar
  101. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126-134.CrossRefGoogle Scholar
  102. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189-217.CrossRefGoogle Scholar
  103. Langer R (1998) Drug delivery and targeting. Nature 392:5-10.Google Scholar
  104. Langer R (2001) Perspectives: drug delivery - drugs on target. Science 293:58-59.CrossRefGoogle Scholar
  105. Langer R (2007) Editorial: Tissue engineering - perspectives, challenges, and future directions.Google Scholar
  106. Tissue Eng 13:1-2.Google Scholar
  107. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920-926.CrossRefGoogle Scholar
  108. Langer R, Linhardt RJ, Hoffberg S, Larsen AK, Cooney CL, Tapper D, Klein M (1982) An enzymatic system for removing heparin in extracorporeal therapy. Science 217:261-263.CrossRefGoogle Scholar
  109. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 100:12741-12746.CrossRefGoogle Scholar
  110. Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN (2007a) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415-421.CrossRefGoogle Scholar
  111. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007b) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377-382.CrossRefGoogle Scholar
  112. Linhardt RJ, Ampofo SA, Fareed J, Hoppensteadt D, Mulliken JB, Folkman J (1992) Isolation and characterization of human heparin. Biochemistry 31:12441-12445.CrossRefGoogle Scholar
  113. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253-1256.CrossRefGoogle Scholar
  114. Liu YF, Wang HF (2007) Nanomedicine - Nanotechnology tackles tumours. Nat Nanotechnol 2:20-21.CrossRefGoogle Scholar
  115. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47-52.CrossRefGoogle Scholar
  116. Lohse DL, Linhardt RJ (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267:24347-55.Google Scholar
  117. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke PC (2004) RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Lett 4:2473-2477.CrossRefGoogle Scholar
  118. Maincent P, Le Verge R, Sado P, Couvreur P, Devissaguet JP (1986) Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J Pharm Sci 75:955-958.CrossRefGoogle Scholar
  119. Maeda Y, Kanda M, Hashimoto M, Hasegawa T, Kimura S, Lian YF, Wakahara T, Akasaka T, Kazaoui S, Minami N, Okazaki T, Hayamizu Y, Hata K, Lu J, Nagase S (2006) Dispersion and separation of small-diameter single-walled carbon nanotubes. J Am Chem Soc 128:12239-12242.CrossRefGoogle Scholar
  120. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett 5:1676-1684.CrossRefGoogle Scholar
  121. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29-37.CrossRefGoogle Scholar
  122. Maynard AD (2006) Nanotechnology: assessing the risks. Nano Today 1:22-33.CrossRefGoogle Scholar
  123. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87-107.CrossRefGoogle Scholar
  124. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180-1189.CrossRefGoogle Scholar
  125. Michael RN (2006) The History of Dental Implants. US Dentistry 24-26.Google Scholar
  126. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K J (2006) Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. Pharmacol Exp Ther 317:1246-1253.CrossRefGoogle Scholar
  127. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. Faseb J 19:311-330.CrossRefGoogle Scholar
  128. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YYY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377-384.CrossRefGoogle Scholar
  129. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221-231.Google Scholar
  130. Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez A (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6:241-251.CrossRefGoogle Scholar
  131. Murugesan S, Mousa S, Vijayaraghavan A, Ajayan PM, Linhardt RJ (2006a) Ionic liquid-derived blood-compatible composite membranes for kidney dialysis. J Biomed Mater Res B Appl Biomater 79:298-304.Google Scholar
  132. Murugesan S, Park TJ, Yang HC, Mousa S, Linhardt RJ (2006b) Blood compatible carbon nanotubes - Nano-based neoproteoglycans. Langmuir 22:3461-3463.CrossRefGoogle Scholar
  133. Murugesan S, Mousa S, O’Connor LJ, Lincoln DW, Linhardt RJ (2007) Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. Febs Letters 581:1157-1160.CrossRefGoogle Scholar
  134. Na K, Kim S, Park K, Kim K, Woo DG, Kwon IC, Chung HM, Park KH (2007) Heparin/poly(Llysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J Am Chem Soc 129:5788-5789.CrossRefGoogle Scholar
  135. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259-1265.CrossRefGoogle Scholar
  136. Nie SM, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257-288.CrossRefGoogle Scholar
  137. Nishiyama N (2007) Nanomedicine - Nanocarriers shape up for long life. Nat Nanotechnol 2:203-204.CrossRefGoogle Scholar
  138. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480-1482.CrossRefGoogle Scholar
  139. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251-277.CrossRefGoogle Scholar
  140. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823-839.CrossRefGoogle Scholar
  141. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342:265-271.CrossRefGoogle Scholar
  142. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB (2002) Smalley RE Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593-596.CrossRefGoogle Scholar
  143. Ostomel TA, Shi QH, Tsung CK, Liang HJ, Stucky GD (2006) Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small 2:1261-1265.CrossRefGoogle Scholar
  144. Pantarotto D, Singh R, McCarthy D, Erhardt M, Braind J-P, Prato M, Kostarelos K Bianco A (2004) Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angew Chem Int Ed 43:5242-5246.CrossRefGoogle Scholar
  145. Patel HRH (2007) The stem cell revolution: a biologic nanotechnology. Eur Urol 51:1173-1174.CrossRefGoogle Scholar
  146. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cells Mater 13:1-10.Google Scholar
  147. Peng WD, Anderson DG, Bao YH, Padera RF, Langer R, Sawicki JA (2007) Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 67:855-862.CrossRefGoogle Scholar
  148. Peracchia MT, Vauthier C, Puisieux F, Couvreur P (1997) Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res 34:317-326.CrossRefGoogle Scholar
  149. Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel M, d’Angelo J, Couvreur P (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121-128.CrossRefGoogle Scholar
  150. Polizu S, Savadogo O, Poulin P, Yahia L (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883-1904.CrossRefGoogle Scholar
  151. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58-74.CrossRefGoogle Scholar
  152. Pushparaj VL, Manikoth SM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible nanocomposite thin film energy storage devices. Proc Natl Acad Sci USA 104: 13574-13577.CrossRefGoogle Scholar
  153. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Brit J Pharmacol 146:882-893.CrossRefGoogle Scholar
  154. Raja PMV, Connolley J, Ganesan GP, Ci LJ, Ajayan PM, Nalamasu O, Thompson DM (2007) Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol Lett 169:51-63.CrossRefGoogle Scholar
  155. Rao CNR, Satishkumar BC, Govindaraj A, Nath M(2001) Nanotubes. Chemphyschem 2:78-105.CrossRefGoogle Scholar
  156. Ratner BD, Schoen FJ, Hoffman AS, Lemons JE, Hoffman A (2004) Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed. Elsevier, New York.Google Scholar
  157. Regev O, ElKati PNB, Loos J, Koning CE (2004) Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater 16:248-251.CrossRefGoogle Scholar
  158. Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48:1039-1042.CrossRefGoogle Scholar
  159. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular selfassembly of lipid derivatives on carbon nanotubes. Science 300:775-778.CrossRefGoogle Scholar
  160. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1:176-182.CrossRefGoogle Scholar
  161. Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of singlewalled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135-142.CrossRefGoogle Scholar
  162. Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498-503.Google Scholar
  163. Service RF (1998) Nanotubes: The Next Asbestos? Science 281:941.CrossRefGoogle Scholar
  164. Shao N, Lu S, Wickstrom E, Panchapakesan B (2007) Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 18: Art. No. 315101.Google Scholar
  165. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909-1926.CrossRefGoogle Scholar
  166. Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE (2007) Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharm 221:339-348.CrossRefGoogle Scholar
  167. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127:4388-4396.CrossRefGoogle Scholar
  168. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357-3362.CrossRefGoogle Scholar
  169. Son SJ, Bai X, Lee SB (2007a) Inorganic hollow nanoparticles and nanotubes in nanomedicine. Part 1. Drug/gene delivery applications. Drug Discov Today 12:650-656.CrossRefGoogle Scholar
  170. Son SJ, Bai X, Lee SB (2007b) Inorganic hollow nanoparticles and nanotubes in nanomedicine. Part 2: imaging, diagnostic, and therapeutic applications. Drug Discov Today 12:657-663.CrossRefGoogle Scholar
  171. Speiser P, Khanna SC (1970) Perlpolymerisate, eine neue perorale Darre-ichungsform und ihre Beeinflussung durch Arzneistoffe. Präpar Pharm 6:1-4.Google Scholar
  172. Sugibayashi K, Morimoto Y, Nadai T, Kato Y (1977) Drug-carrier property of albumin microspheres in chemotherapy. I. Tissue distribution of microsphere-entrapped 5-fluorouracil in mice. Chem Pharm Bull 25:3433-3434.Google Scholar
  173. Sugibayashi K, Akimoto M, Morimoto Y (1979a) Drug-carrier property of albumin microspheres in chemotherapy III. Effect of microsphere-entrapped 5-fluorouracil on ehrlich ascites-carcinoma in mice. J Pharmacobio-Dynam 2:350-355.Google Scholar
  174. Sugibayashi K, Morimoto Y, Nadai T, Kato Y, Hasegawa A, Arita T (1979b) Drug-carrier property of albumin microspheres in chemotherapy. II. Preparation and tissue distribution in mice of microsphere-entrapped 5-fluorouracil. Chem Pharm Bull 27:204-209.Google Scholar
  175. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105-1136.CrossRefGoogle Scholar
  176. Thompson KP (2007) Near vision accommodating intraocular lens with adjustable power. U.S. patent No. 5,607,472. Retrieved on 2007-02-04.Google Scholar
  177. Tong R, Cheng JJ (2007) Anticancer polymeric nanomedicines. Polym Rev 47:345-381.CrossRefGoogle Scholar
  178. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42-50.CrossRefGoogle Scholar
  179. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26:7154-7163.CrossRefGoogle Scholar
  180. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415-418.CrossRefGoogle Scholar
  181. Wang HF, Wang J, Deng XY, Sun HF, Shi ZJ, Gu ZN, Liu YF, Zhao YL (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019-1024.CrossRefGoogle Scholar
  182. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117-125.CrossRefGoogle Scholar
  183. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1284-1297.CrossRefGoogle Scholar
  184. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121-131.CrossRefGoogle Scholar
  185. Widder K, Flouret G, Senyei A (1979) Magnetic microspheres: synthesis of a novel parenteral drug carrier. J Pharm Sci 68:79-82.CrossRefGoogle Scholar
  186. Widder KJ, Marino PA, Morris RM, Howard DP, Poore GA, Senyei AE (1983a) Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: ultrastructural evaluation of microsphere disposition. Eur J Cancer Clin Oncol 19:141-147.CrossRefGoogle Scholar
  187. Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE (1983b) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 19:135-139.CrossRefGoogle Scholar
  188. Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261-1268.CrossRefGoogle Scholar
  189. Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, He PM, Li WZ (1999) Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc 146:1696-1701.CrossRefGoogle Scholar
  190. Wu Y, Hudson JS, Lu Q, Moore JM, Mount AS, Rao AM, Alexov E, Ke PC (2006) Coating singlewalled carbon nanotubes with phospholipids. J Phys Chem B 110:2475-2478.CrossRefGoogle Scholar
  191. Xiao H, Yang LS, Zou HF, Yang L, Le XC (2007) Analysis of oxidized multi-walled carbon nanotubes in single K562 cells by capillary electrophoresis with laser-induced fluorescence. Anal Bioanal Chem 387:119-126.CrossRefGoogle Scholar
  192. Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, Shimizu T, Okano T (2006) Cell delivery in regenerative medicine: the cell sheet engineering approach. J Control Release 116:193-203.CrossRefGoogle Scholar
  193. Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127:9875-9880.CrossRefGoogle Scholar
  194. Yu BZ, Yang JS, Li WX (2007) In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon 45:1921-1927.CrossRefGoogle Scholar
  195. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199-11205.CrossRefGoogle Scholar
  196. Yurekli K, Mitchell CA, Krishnamoorti R (2004) Small-angle neutron scattering from surfactantassisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126:9902-9903.CrossRefGoogle Scholar
  197. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003a) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338-342.CrossRefGoogle Scholar
  198. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003b) Structurebased carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545-1548.CrossRefGoogle Scholar
  199. Zolle I, Hosein F, Rhodes BATK, Wagner HN Jr (1970) Human serum albumin microspheres for studies of the reticuloendothelial system. J Nucl Med 11:379.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Tae-Joon Park
    • 1
  • Jeffrey G. Martin
    • 2
    • 3
  • Robert J. Linhardt
    • 1
    • 2
    • 3
  1. 1.Department of Chemical and Biological EngineeringCenter for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Biotech Center 4005TroyUSA
  2. 2.Department of Chemistry and Chemical BiologyCenter for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Biotech Center 4005TroyUSA
  3. 3.Department of BiologyCenter for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Biotech Center 4005TroyUSA

Personalised recommendations