Twenty Years of Promises: Fullerene in Medicinal Chemistry

  • Tatiana Da Ros
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 1)


Many biological activities have been envisioned for fullerenes and some of them seem to be very promising. The lack of solubility in biologically friendly environments is the major obstacle in the development of this field. The possibility of multiple fuctionalization can be exploited to get more soluble compounds but, up to now, only a few polyadducts, presenting perfectly defined geometry, can be selectively prepared avoiding long purification processes.

The toxicity of this third allotropic form of carbon is an aspect related to application in medicine and biology, while the concern about the environmental impact is due to the industrial production of fullerenes. Many studies are dedicated to both aspects and, so far, it is not possible to have a definitive answer although the current findings allow some optimistic vision.

In this chapter the main biological applications of fullerene and fullerene derivatives will be reviewed, with special attention to the most recent advances in this field. Antiviral and antibacterial activity, enzymatic inhibition, and DNA photocleavage are some aspects considered herein, together with the use of these nanostructures as possible vectors for drug and gene delivery. The most promising applications include the use of endohedral fullerenes, filled by gadolinium, in magnetic resonance imaging (MRI) and the antioxidant capacity exploitation of some tris-adducts and fullerols.


Antibacterial activity anticancer activity antioxidant properties antiviral activity cell protection contrast agent drug delivery photodynamic therapy protein interaction radiotherapy toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Rad. Biol. Med. 37:1191-1202.CrossRefGoogle Scholar
  2. Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS (2007) Enhanced stability of enzymes adsorbed onto nanoparticles. J. Nanosci. Nanotechnol. 7:1675-1678.CrossRefGoogle Scholar
  3. Baker G, Gupta A, Clark M, Valenzuela B, Staska L, Harbo S, Pierce J, Dill J (2007) Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci.: doi:10.1093/toxsci/kfm1243Google Scholar
  4. Belgorodsky B, Fadeev L, Kolsenik J, Gozin M (2006) Formation of a soluble stable complex between pristine C60-fullerene and a native blood protein. Chem. Biol. Chem. 7:1783-1789.Google Scholar
  5. Benyamini H, Shulman-Peleg A, Wolfson HJ, Belgorodsky B, Fadeev L, Gozin M (2006) Interaction of C60-fullerene and carboxyfullerene with proteins: Docking and binding site alignment. Bioconjug. Chem. 17:378-386.CrossRefGoogle Scholar
  6. Beuerle F, Witte P, Hartnagel U, Lebovitz R, Parng C, Hirsch A (2007) Cytoprotective activities of water-soluble fullerenes in zebrafish models. J. Exp. Nanosci. 2:147-170.CrossRefGoogle Scholar
  7. Bianco A, Da Ros T (2007) Biological applications of fullerenes. In: Langa F, Nierengarten J-F (eds.) Fullerenes - Principles and Applications. Royal Chemical Society, Cambridge, pp. 301-328.Google Scholar
  8. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 38:913-923.CrossRefGoogle Scholar
  9. Burger C, Chu B (2007) Functional nanofibrous scaffolds for bone reconstruction. Colloid. Surf. B 56:134-141.CrossRefGoogle Scholar
  10. Chan KC, Patri AK, Veenstra TD, McNeil SE, Issaq HJ (2007) Analysis of fullerene-based nanomaterial in serum matrix by CE. Electrophoresis 28:1518-1524.CrossRefGoogle Scholar
  11. Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 8:663-669.CrossRefGoogle Scholar
  12. Da Ros T, Prato M, Novello F, Maggini M, Banfi E (1996) Easy access to water soluble fullerene derivatives via 1,3-dipolar cycloadditions of azomethine ylides to C60. J. Org. Chem. 61:9070-9072.CrossRefGoogle Scholar
  13. Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin. Cancer Res. 12:7086-7091.CrossRefGoogle Scholar
  14. Diener MD, Afford JM, Kennel SJ, Mirzadeh S (2007) 212Pb@C60 and its water-soluble derivatives: Synthesis, stability, and suitability for radioimmunotherapy. J. Am. Chem. Soc. 129: 5131-5138.CrossRefGoogle Scholar
  15. Dugan L, Gabrielsen J, Yu S, Lin T, Choi D (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 3:129-135.CrossRefGoogle Scholar
  16. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK-F, Luh T-Y, Choi DW, Lin T-S (1997) Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 94:9434-9439.CrossRefGoogle Scholar
  17. Dugan LL, Lovett E, Cuddihy S, Ma B-W, Lin T-S, Choi DW (2000) Carboxyfullerenes as neuro-protective antioxidants. In: Kadish KM, Ruoff RS (eds.) Fullerenes: Chemistry, Physics, and Technology. Wiley, New York, pp. 467-479.Google Scholar
  18. Enes RF, Tome AC, Cavaleiro JAS, Amorati R, Fumo MG, Pedulli GF, Valgimigli L (2006) Synthesis and antioxidant activity of [60]fullerene-BHT conjugates. Chem. Eur. J. 12:4646-4653.CrossRefGoogle Scholar
  19. Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 41:2636-2642.CrossRefGoogle Scholar
  20. Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC (2006) In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology 240:756-764.CrossRefGoogle Scholar
  21. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39:4307-4316.CrossRefGoogle Scholar
  22. Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993) Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc. 115:6506-6509.CrossRefGoogle Scholar
  23. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5:2578-2585.CrossRefGoogle Scholar
  24. Gubskaya VP, Berezhnaya LS, Gubaidullin AT, Faingold II, Kotelnikova RA, Konovalova NP, Morozov VI, Litvinov IA, Nuretdinov IA (2007) Synthesis, structure and biological activity of nitroxide malonate methanofullerenes. Org. Biomol. Chem. 5:976-981.CrossRefGoogle Scholar
  25. Harhaji L, Isakovic A, Raicevic N, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Markovic I, Trajkovic V (2007) Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. Eur. J. Pharmacol. 568:89-98.CrossRefGoogle Scholar
  26. Higashi N, Shosu T, Koga T, Niwa M, Tanigawa T (2006) pH-responsive, self-assembling nano-particle from a fullerene-tagged poly(L-glutamic acid) and its superoxide dismutase mimetic property. J. Colloid Interface Sci. 298:118-123.CrossRefGoogle Scholar
  27. Hu Z, Guan W, Wang W, Huang L, Xing H, Zhu Z (2007a) Synthesis of β-alanine C60 derivative and its protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Cell Biol Int. 31:798-804.CrossRefGoogle Scholar
  28. Hu Z, Guan W, Wang W, Huang L, Xing H, Zhu Z (2007b) Protective effect of a novel cystine C60 derivative on hydrogen peroxide-induced apoptosis in rat pheochromocytoma PC12 cells. Chem. Biol. Interact. 167:135-144.CrossRefGoogle Scholar
  29. Huang S-T, Liao J-S, Fang H-W, Lin C-M (2008) Synthesis and anti-inflammation evaluation of new C60 fulleropyrrolidines bearing biologically active xanthine. Bioorg. Med. Chem. Lett. 18:99-103.CrossRefGoogle Scholar
  30. Ikeda A, Ejima A, Nishiguchi K, Kikuchi JI, Matsumoto T, Hatano T, Shinkai S, Goto M (2005) DNA-photocleaving activities of water-soluble carbohydrate-containing nonionic homooxacalix[3]arene [60]fullerene complex. Chem. Lett. 34:308-309.CrossRefGoogle Scholar
  31. Ikeda A, Doi Y, Hashizume M, Kikuchi JI, Konishi T (2007a) An extremely effective DNA photo-cleavage utilizing functionalized liposomes with a fullerene-enriched lipid bilayer. J. Am. Chem. Soc. 129:4140-4141.CrossRefGoogle Scholar
  32. Ikeda A, Doi Y, Nishiguchi K, Kitamura K, Hashizume M, Kikuchi JI, Yogo K, Ogawa T, Takeya T (2007b) Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene. Org. Biomol. Chem. 5:1158-1160.CrossRefGoogle Scholar
  33. Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S, Harhaji L, Raicevic N, Romcevic N, Vasiljevic-Radovic D, Dramicanin M, Trajkovic V (2006a) Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. Biomaterials 27:5049-5058.CrossRefGoogle Scholar
  34. Isakovic A, Markovic Z, Todorovic-Marcovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006b) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci. 91:173-183.CrossRefGoogle Scholar
  35. Isobe H, Nakanishi W, Tomita N, Jinno S, Okayama H, Nakamura E (2006a) Gene delivery by aminofullerenes: Structural requirements for efficient transfection. Chem. Asian J. 1:167-175.CrossRefGoogle Scholar
  36. Isobe H, Nakanishi W, Tomita N, Jinno S, Okayama H, Nakamura E (2006b) Nonviral gene delivery by tetraamino fullerene. Mol. Pharm. 3:124-134.CrossRefGoogle Scholar
  37. Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C60-NVP copolymer: A potential material for photodynamic therapy. Chem. Commun. 4805-4807.Google Scholar
  38. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. A review. Bioorg. Med. Chem. 4:767-779.CrossRefGoogle Scholar
  39. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39:1378-1383.CrossRefGoogle Scholar
  40. Jiang G, Li G (2006) Preparation and biological activity of novel cucurbit[8]uril-fullerene complex. J. Photochem. Photobiol. B 85:223-227.CrossRefGoogle Scholar
  41. Jiang G, Li G (2007) Synthesis, characterization and biological activity of C60 derivative. J. Appl. Polym. Sci. 104:3120-3123.CrossRefGoogle Scholar
  42. Klumpp C, Lacerda L, Chaloin O, Da Ros T, Kostarelos K, Prato M, Bianco A (2007) Multifunctionalised cationic fullerene adducts for gene transfer: Design, synthesis and DNA complexation. Chem. Commun. 3762-3764.Google Scholar
  43. Kolsenik J, Belgorodsky B, Fadeev L, Gozin M (2007) Can apomyoglobin form a complex with a spherical ligand? Interactions between apomyoglobin and [C60] fullerene derivative. J. Nanosci. Nanotechnol. 7:1389-1394.CrossRefGoogle Scholar
  44. Laus S, Sitharaman B, Toth V, Bolskar RD, Helm L, Asokan S, Wong MS, Wilson LJ, Merbach AE (2005) Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@ C60(OH)x and Gd@C60(C(COOH)2)10. J. Am. Chem. Soc. 127:9368-9369.CrossRefGoogle Scholar
  45. Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-Fullerenes: Detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 4:14.CrossRefGoogle Scholar
  46. Liu J, Ohta Si, Sonoda A, Yamada M, Yamamoto M, Nitta N, Murata K, Tabata Y (2007) Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J. Controlled Rel. 117:104-110.CrossRefGoogle Scholar
  47. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol. Chem. 25:1132-1137.CrossRefGoogle Scholar
  48. Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60Hx C70Hx). Environ. Sci. Technol. 41:4465-4470.CrossRefGoogle Scholar
  49. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspen-sions: Effects of preparation method and particle size. Environ. Sci. Technol. 40:4360-4366.CrossRefGoogle Scholar
  50. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett. 15:3615-3618.CrossRefGoogle Scholar
  51. Martín N (2006) New challenges in fullerene chemistry. Chem. Commun. 2093-2104.Google Scholar
  52. Mashino T, Usui N, Okuda K, Hirota T, Mochizuki M (2003) Respiratory chain inhibition by fullerene derivatives: Hydrogen peroxide production caused by fullerene derivatives and a respiratory chain system. Bioorg. Med. Chem. 11:1433-1438.CrossRefGoogle Scholar
  53. Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Nakamura S, Mochizuki M (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15:107-1109.CrossRefGoogle Scholar
  54. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36:807-815.CrossRefGoogle Scholar
  55. Nakamura E, Tokuyama H, Yamago S, Shiraki T, Sugiura Y (1996) Biological activity of water-Soluble fullerenes. Structural dependence of DNA cleavage, cytotoxicity, and enzyme inhibitory activities including HIV-Protease inhibition. Bull. Chem. Soc. Jpn. 69:2143-2151.CrossRefGoogle Scholar
  56. Nakamura E, Isobe H, Tomita N, Sawamura M, Jinno S, Okayama H (2000) Functionalized fullerene as an artificial vector for transfection. Angew. Chem. Int. Edit. 39:4254-4257.CrossRefGoogle Scholar
  57. Niwa Y, Iwai N (2006) Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test. Environ. Health Prev. Med. 11:292-297.CrossRefGoogle Scholar
  58. Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile Largemouth Bass. Environ. Health Perspect. 112:1058-1062.CrossRefGoogle Scholar
  59. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44:1112-1120.CrossRefGoogle Scholar
  60. Pantarotto D, Bianco A, Pellarini F, Tossi A, Giangaspero A, Zelezetsky I, Briand J-P, Prato M (2002) Solid-phase synthesis of fullerene-peptides. J. Am. Chem. Soc. 124:12543-12549.CrossRefGoogle Scholar
  61. Pastorin G, Marchesan S, Hoebeke J, Da Ros T, Ehret-Sabatier L, Briand J-P, Prato M, Bianco A (2006) Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesterase. Org. Biomol. Chem. 4:2556-2562.CrossRefGoogle Scholar
  62. Pellarini F, Pantarotto D, Da Ros T, Giangaspero A, Tossi A, Prato M (2001) A novel [60]fullerene amino acid for use in solid-phase peptide synthesis. Org. Lett. 3:1845-1848.CrossRefGoogle Scholar
  63. Porter AE, Muller K, Skepper J, Midgley P, Welland M (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomaterialia 2:409-419.CrossRefGoogle Scholar
  64. Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ. Sci. Technol. 41:3012-3017.CrossRefGoogle Scholar
  65. Quick K, Dugan L (2004) Fullerene derivative (C3) functions as a SOD mimetic by reducing age-related increase in superoxide levels and prevention of age-related loss of mitochondrial membrane potential in brain. Free Rad. Biol. Med. 37:S163-S163.Google Scholar
  66. Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA (2006) Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. In Vitro 20:1313-1320.CrossRefGoogle Scholar
  67. Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL (2007) Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179:665-672.Google Scholar
  68. Sarova GH, Da Ros T, Guldi DM (2006) Fullerene-based devices for biological applications. In: Kumar C (ed.) Nanodevices for the Life Science, Vol. 4. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 352-389.Google Scholar
  69. Sayes C, Marchione A, Reed K, Warheit DB (2007) Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 7:2399-2403.CrossRefGoogle Scholar
  70. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587-7595.CrossRefGoogle Scholar
  71. Schinazi RF, Sijbesma RP, Srdanov G, Hill CL, Wudl F (1993) Synthesis and virucidal activity of a water soluble, configurationally stable, derivatized C60 fullerene. Antimicrob. Agents Chemother. 37:1707-1710.Google Scholar
  72. Schuster DI, Wilson LJ, Kirschner AN, Schinazi RF, Schlueter-Wirtz S, Tharnish P, Barnett T, Ermolieff J, Tang J, Brettreich M, Hirsch A (2000) In: Martin N, Maggini M, Guldi DM (eds.) Fullerene 2000 - Functionalized Fullerenes, Vol. 9. The Electrochemical Society, Pennington, NJ, pp. 267-270.Google Scholar
  73. Sijbesma R, Srdanov G, Wudl F, Castoro JA, Wilkins C, Friedman SH, DeCamp DL, Kenyon GL (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J. Am. Chem. Soc. 115:6510-6512.CrossRefGoogle Scholar
  74. Sun T, Xu Z (2006) Radical scavenging activities of alpha-alanine C60 adduct. Bioorg. Med. Chem. Lett. 16:3731-3734.CrossRefGoogle Scholar
  75. Tagmatarchis N, Shinohara H (2001) Fullerene in medicinal chemistry and their biological applications. Mini Rev. Med. Chem. 1:339-348.Google Scholar
  76. Tang YJ, Ashcroft JM, Chen D, Min G, Kim CH, Murkhejee B, Larabell C, Keasling JD, Chen FF (2007) Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 7:754-760.CrossRefGoogle Scholar
  77. Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin MR (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol. 12:1127-1135.CrossRefGoogle Scholar
  78. Tóth E, Bolskar RD, Borel A, Gonzalez G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127:799-805.CrossRefGoogle Scholar
  79. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 41:2985-2991.CrossRefGoogle Scholar
  80. Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891-1898.CrossRefGoogle Scholar
  81. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K (2005) Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26:7154-7163.CrossRefGoogle Scholar
  82. Witte P, Beuerle F, Hartnagel U, Lebovitz R, Savouchkina A, Sali S, Guldi D, Chronakis N, Hirsch A (2007) Water-solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org. Biomol. Chem. 5:3599-3613.CrossRefGoogle Scholar
  83. Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 59:351-358.CrossRefGoogle Scholar
  84. Xiao L, Takada H, Gan XH, Miwa N (2006) The water-soluble fullerene derivative ‘Radical Sponge®’ exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg. Med. Chem. Lett. 16:1590-1595.CrossRefGoogle Scholar
  85. Yamawaki H, Iwai N (2006) Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 290:1495-1502.CrossRefGoogle Scholar
  86. Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007a) Fullerene-derivatized amino acids: Synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis. Chem. Eur. J. 13:2530-2545.CrossRefGoogle Scholar
  87. Yang J, Wang K, Driver J, Yang J, Barron AR (2007b) The use of fullerene substituted phenyla-lanine amino acid as a passport for peptides through cell membranes. Org. Biomol. Chem. 5:260-266.CrossRefGoogle Scholar
  88. Yang X, Chen L, Qiao X, Fan C (2007c) Photo-induced damages of cytoplasmic and mitochondrial membranes by a [C60]fullerene malonic acid derivative. Int. J. Toxicol. 26:197-201.CrossRefGoogle Scholar
  89. Yang X, Chen Z, Meng X, Li B, Tan X (2007d) Inhibition of DNA restrictive endonucleases and Taq DNA polymerase by trimalonic acid C60. Chin. Sci. Bull. 52:1802-1806.CrossRefGoogle Scholar
  90. Yang XL, Huang C, Qiao XG, Yao L, Zhao DX, Tan X (2007e) Photo-induced lipid peroxidation of erythrocyte membranes by a bis-methanophosphonate fullerene. Toxicol. In Vitro 21:1493-1498.CrossRefGoogle Scholar
  91. Ying Q, Zhang J, Liang D, Nakanishi W, Isobe H, Nakamura E, Chu B (2005) Fractal behavior of functionalized fullerene aggregates. I. Aggregation of two-handed tetraaminofullerene with DNA. Langmuir 21:9824-9831.Google Scholar
  92. Yu C, Canteenwala T, Chiang LY, Wilson B, Pritzker K (2005) Photodynamic effect oh hydrophilic C60-derived nanostructures for catalytic antitumoral antibacterial applications. Synth. Metals 153:37-40.CrossRefGoogle Scholar
  93. Zakharian T, Seryshev A, Sitharaman B, Gilbert B, Knight V, Wilson L (2005) A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 127:12508-12509.CrossRefGoogle Scholar
  94. Zarubaev VV, Belousova IM, Kiselev OI, Piotrovsky LB, Anfimov PM, Krisko TC, Muraviova TD, Rylkov VV, Starodubzev AM, Sirotkin AC (2007) Photodynamic inactivation of influenza virus with fullerene C60 suspension in allantoic fluid. Photodiagn. Photodyn. Ther. 4:31-35.CrossRefGoogle Scholar
  95. Zhang X-F, Shu C-Y, Xie L, Wang C-R, Zhang Y-Z, Xiang J-F, Li L, Tang Y-I (2007) Protein conformation changes induced by a novel organophosphate-containing water-soluble derivative of a C60 fullerene nanoparticle. J. Phys. Chem. C 111:14327-14333.CrossRefGoogle Scholar
  96. Zhao QF, Zhu Y, Ran TC, Li JG, Li QN, Li WX (2006) Cytotoxicity of fullerenols on Tetrahymena pyriformis. Nucl. Sci. Technol./Hewuli 17:280-284.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Tatiana Da Ros
    • 1
  1. 1.University of TriesteItaly

Personalised recommendations