Skip to main content

Towards Polymer-Based Capsules with Drastically Reduced Controlled Permeability

  • Conference paper
Nanomaterials for Application in Medicine and Biology

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

  • 1571 Accesses

Abstract

Small molecules (dyes, therapeutics, etc.) could be easily handled, stored, delivered, and released by polyelectrolyte capsules. To make the polyelectrolyte capsule more efficient for small molecule encapsulation, capsule permeability should be significantly decreased. Here, we demonstrate the possibility to entrap water-soluble molecular species into polyelectrolyte capsules modified by a low permeable dense polymer (polypyrrole). Possible future areas in PE capsule application as carriers for gases and volatiles in the pharmaceutical, food, and gases industry, agriculture and cosmetology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. W. Frank, Introduction and historical review of electron beam processing for environmental pollution control, Radiat. Phys. Chem. 45(6), 989–1002 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Y. H. Wang and D. J. Jacob, Anthropogenic forcing on tropospheric ozone and OH since preindustrial times, J. Geophys. Res. 103(D23), 31, 123–31, 136 (1998).

    Article  Google Scholar 

  3. J. Stachnik, Inhaled anesthetic agents, Am. J. of Health-Syst. Pharm. 63, 623–634 (2006).

    Article  CAS  Google Scholar 

  4. A. A. Malekirad, A. Ranjbar, K. Rahzani, M. Kadkhodaee, A. Rezaie, B. Taghavi, and M. Abdollahi, Oxidative stress in operating room personnel: Occupational exposure to anesthetic gases, Hum. Exp. Toxicol. 24(11), 597–601 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. American Society of Anesthesiologists, Occupational disease among operating room personnel: A national study. Report of an ad hoc committee on the effect of trace anesthetics on the health of operating room personnel, Anesthesiology 41, 321–340 (1970).

    Google Scholar 

  6. National Institute for Occupational Safety and Health (NIOSH) Criteria for a Recommended Standard: Occupational Exposure to Waste Anesthetic Gases and Vapors U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention: Cincinnati, Ohio (1977) DHEW Pub. No. 77B140.

    Google Scholar 

  7. G. Smith and A. W. Shirley, A review of the effects of trace concentrations of anaesthetics on performance, Br. J. Anaesth. 50(7), 701–712 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. E. N. Cohen, C. H. Gift, W. B. Brown, W. Greenfield, M. L. Wu, T. W. Jones, C. E. Whitcher, E. J. Driscoll, and J. B. Brodsky, Occupational disease in dentistry and chronic exposure to trace anesthetic gases, J. Am. Dent. Assoc. 101, 21–31 (1980).

    PubMed  CAS  Google Scholar 

  9. S. S. Guirguis, L. P. Pelmear, L. M. Roy, and L. Wong, Health effects associated with exposure to anaesthetic gases in Ontario hospital personnel, Brit. J. Ind. Med. 47(7) 490–7 (1990).

    CAS  Google Scholar 

  10. K. Hoerauf, M. Lierz, G. Wiesner, K. Schroegendorfer, P. Lierz, A. Spacek, L. Brunnberg, and M. Nüsse, Genetic damage in operating room personnel exposed to isoflurane and nitrous oxide, Occup. Environ. Med. 56(7), 433–437 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science 277(5330), 1232–1237 (1997).

    Article  CAS  Google Scholar 

  12. (a) G. B. Sukhorukov, H. Möhwald, G. Decher, and Y. M. Lvov, Assembly of polyelectrolyte multilayer films by consecutively alternating adsorption of polynucleotides and polycations, Thin Solid Films 286, 220–223 (1996); (b) Y. Lvov, K. Ariga, and T. Kunitake, Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, J. Am. Chem. Soc. 117, 6117–6123 (1995); (c) S. W. Keller, S. A. Johnson, E. S. Brigham, E. H. Yonemoto, and T. E. Mallouk, Photo induced charge separation in multilayer thin films growth by sequential adsorption of polyelectrolytes, J. Am. Chem. Soc. 117, 12879–12880 (1995); (d) G. Decher, B. Lehr, K. Lowack, Y. Lvov, and J. Schmitt, New nanocomposite films for biosensors: Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA, Biosens. Bioelectron. 9, 677–684 (1994); (e) G. B. Sukhorukov, M. M. Montrel, A. I. Petrov, L. I. Shabarchina, and B. I. Sukhorukov, Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications, Biosens. Bioelectron. 11(9), 913–922 (1996); (f) G. B. Sukhorukov, J. Schmitt, and G. Decher, Reversible swelling of polyanion/polycation multilayers films in solutions of different ionic strength, Ber. Bunsen-Ges. Phys. Chem. 100, 948–953 (1996).

    Google Scholar 

  13. Y. S. Gu, A. E. Decker, and D. J. McClements, Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ɩ-carrageenan and gelatin, Langmuir 21(13), 5752–5760 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. A. A. Antipov and G. B. Sukhorukov, Polyelectrolyte multilayer capsules as vehicles with tunable permeability, Adv. Colloid Interface Sci., 111(1–2), 49–61 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. X. Qiu, S. Leporatti, E. Donath, and H. Möhwald, Studies on the drug release properties of polysaccharide multilayers encapsulated Ibuprofen microparticles, Langmuir 17(17), 5375–5380 (2001).

    Article  CAS  Google Scholar 

  16. G. Ibarz, L. Dähne, E. Donath, and H. Möhwald, Smart micro- and nanocontainers for storage, transport, and release, Adv. Mater. 13, 1324–1327 (2001).

    Article  CAS  Google Scholar 

  17. C. Déjugnat and G. B. Sukhorukov, Ph-responsive properties of hollow polyelectrolyte microcapsules templated on various cores, Langmuir 20, 7265–7269 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. B. Neu, A. Voigt, R. Mitlohner, S. Leporatti, C. Y. Gao, E. Donath, H. Kiesewetter, H. Möhwald, H. J. Meiselman, and H. Bäumler, Biological cells as templates for hollow microcapsules, J. Microencapsulation 18(3), 385–395 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. G. B. Sukhorukov, D. V. Volodkin, A. M. Günther, A. I. Petrov, D. B. Shenoy, and H. Möhwald, Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds, J. Mater. Chem. 14, 2073–2081 (2004).

    Article  CAS  Google Scholar 

  20. D. Yoo, S. S. Shiratori, and M. F. Rubner, Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of wear polyelectrolytes, Macromolecules 31, 4309–4318 (1998).

    Article  ADS  CAS  Google Scholar 

  21. S. A. Sukhishvili and S. Granick, Layered, erasable, ultrathin polymer films, J. Am. Chem Soc., 122, 9550–9551 (2000).

    Article  CAS  Google Scholar 

  22. K. G. Yager and C. J. Barrett, All-optical patterning of azo polymer films, Curr. Opin. Solid State Mater. Sci. 5(6), 487–494 (2001).

    Article  CAS  Google Scholar 

  23. K. P. Xiao, J. J. Harris, A. Park, C. M. Martin, V. Pradeep, and M. L. Bruening, Formation of ultrathin, defect-free membranes by grafting of poly(acrylic acid) onto layered polyelectrolyte films, Langmuir 17, 8236–8241 (2001).

    Article  CAS  Google Scholar 

  24. D. M. Sullivan and M. L. Bruening, Ultrathin, Gas-selective polyimide membranes prepared from multilayer polyelectrolyte films, Chem. Mater. 15, 281–287 (2003).

    Article  CAS  Google Scholar 

  25. K. Köhler, D. Shchukin, H. Möhwald, G. B. Sukhorukov, Thermal behavior of polyelectrolyte multilayer microcapsules. The effect of odd and even layer number, J. Phys. Chem. B 109, 18250–18259 (2005).

    Article  CAS  Google Scholar 

  26. D. V. Andreeva, D. A. Gorin, D. G. Shchukin, and G. B. Sukhorukov, Magnetic microcapsules with low permeable polypyrrole skin layer, Macromol. Rapid Commun. 27(12), 931–936 (2006).

    Article  CAS  Google Scholar 

  27. R. E. Kesting and A. K. Fritzsche, Polymeric gas separation membranes (Wiley, New York, 1993).

    Google Scholar 

  28. R. V. Parthasarathy, V. P. Menon, and C. R. Martin, Unusual gas-transport selectivity in a partially doped form of the conductive polymer polypyrrole, Chem. Mater. 9, 560–566 (1997).

    Article  CAS  Google Scholar 

  29. J. A. Conklin, T. M. Su, S. C. Huang, and R. B. Kaner, Gas and liquid separation applications of polyaniline membrane, in: Handbook of conductive polymers, T. A. Skotheim (ed.) (Marcel Dekker, New York, 1986), pp. 945–962.

    Google Scholar 

  30. M. C. De Jesus, R. A. Weiss, and Y. Chen, The development of conductive composite surfaces by a diffusion-limited in situ polymerization of pyrrole in sulfonated polystyrene ionomers, Polym. Sci.: part B: Polym. Phys., 1997, 35(2), 347–357.

    Article  CAS  Google Scholar 

  31. D. V. Andreeva, Z. Pientka, L. Brozová, M. Bleha, G. A. Polotskaya, and G. K. Elyashevich, Effect of polymerization conditions of pyrrole on formation, structure and properties of high gas separation thin polypyrrole films, Thin Solid Film 406(1), 54–63(10) (2002).

    Article  ADS  CAS  Google Scholar 

  32. J. J. Lopez Cascales, A. J. Fernandez, and T. F. Otero, Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study, J. Phys. Chem. B 107 (35), 9339–9343, (2003).

    Article  CAS  Google Scholar 

  33. G. Brunner, Gas extraction: An introduction to fundamentals of supercritical fluids and the application to separation processes (Steinkopff, Darmstadt, 1994).

    Google Scholar 

  34. W. Peschka, Operating characteristics of a LH2-fuelled automotive vehicle and of a semi-automatic LH2-refuelling station, Int. J. Hydrogen Energy 7(8), 661–669 (1982).

    Article  CAS  Google Scholar 

  35. A. V. Leontiev and D. M. Rudkevich, Encapsulation of gases in the solid state, Chem. Commun. 2004, 1468–1469.

    Google Scholar 

  36. D. M. Rudkevich, Emerging supramolecular chemistry of gases, Angew. Chem. Int. Ed. 43, 558–571 (2004).

    Article  CAS  Google Scholar 

  37. Y. F. Cavalieri, A. E. Hamassi, E. Chiessi, and G. Paradossi, Tethering functional ligands onto shell of ultrasound active polymeric microbubbles, Biomacromolecules 7, 604–611 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. A. El-Aneed. An overview of current delivery systems in cancer gene therapy, J.Controlled Release 94(1), 1–14 (2004).

    Article  CAS  Google Scholar 

  39. J. Szejtli, Introduction and general overview of cyclodextrin, Chem. Rev. 98(5), 1743–1754 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. K. G. H. Desai and H. J. Park, Recent developments in microencapsulation of food ingredients, Drying Technol. 23, 1361–1394 (2005).

    Article  CAS  Google Scholar 

  41. J. Shaikh, R. Bhosale, and R. Singhal, Microencapsulation of black pepper oleoresin, Food Chem. 94(1), 105–110 (2006).

    Article  CAS  Google Scholar 

  42. T. A. Reineccius, G. A. Reineccius, and T. L. Peppard, The effect of solvent interactions on α-, β–, and γ–Cyclodextrin/Flavor molecular inclusion complexes, J. Agric.Food Chem., 53(2), 388–392 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Andreeva, D., Sukhorukov, G. (2008). Towards Polymer-Based Capsules with Drastically Reduced Controlled Permeability. In: Giersig, M., Khomutov, G.B. (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6829-4_12

Download citation

Publish with us

Policies and ethics