Skip to main content

Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

  • Conference paper
Nanomaterials for Application in Medicine and Biology

Abstract

Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  2. L. Lacerda, A. Bianco, M. Prato, and K. Kostarelos, Carbon nanotubes as nanomedicines: from toxicology to pharmacology, Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006).

    Article  CAS  Google Scholar 

  3. S. Polizu, O. Savadogo, P. Poulin, and L. Yahia, Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology, J. Nanosci. Nanotechnol. 6(7), 1883–1904 (2006).

    Article  CAS  Google Scholar 

  4. N. Sinha and J. T. W. Yeow, Carbon nanotubes for biomedical applications, EEE Trans Nanobiosci. 4(2), 180–195 (2005).

    Article  Google Scholar 

  5. J. A. Rojas-Chapana and M. Giersig, Multi walled carbon nanotubes and metallic nanoparticles and their application in biomedicine, J. Nanosci. Nanotechnol. 6, 316–321 (2006).

    CAS  Google Scholar 

  6. J. A. Rojas-Chapana, M. A. Correa-Duarte, Z. Ren, K. Kempa, and M. Giersig, Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation, Nano Lett. 4(5), 985–988 (2004).

    Article  ADS  CAS  Google Scholar 

  7. J. A. Rojas-Chapana, J. Troszczynska, I. Firkowska, C. Morsczeck and M. Giersig, Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells, Lab. Chip 5(5), 536–539 (2005).

    Article  CAS  Google Scholar 

  8. T. E. McKnight, A. V. Melechko, G. D. Griffin, M. A. Guillorn, V. I. Merkulov, F. Serna, D. K. Hensley, M. J. Doktycz, D. H. Lowndes, and M. L. Simpson, Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation, Nanotechnology 14(5), 551–556 (2003).

    Article  ADS  CAS  Google Scholar 

  9. D. Cai, J. M. Mataraza, Z. H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nat. Methods 2, 449–454 (2005).

    Article  CAS  Google Scholar 

  10. M. Prato, K. Kostarelos, A. Bianco, D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, and J. P. Briand, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed. Engl. 43(39), 5242–5246 (2004).

    Article  CAS  Google Scholar 

  11. L. Gao, L. Nie, T. Wang, Y. Qin, Z. Guo, D. Yang, and X. Yan, Carbon nanotube delivery of the GFP gene into mammalian cells, ChemBioChem 7(2), 239–242 (2006).

    Article  CAS  Google Scholar 

  12. N. W. Kam, Z. Liu, and H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. Engl. 45(4), 577–581 (2006).

    Article  CAS  Google Scholar 

  13. J. D. Yantzi and J. T. W. Yeow, Carbon nanotube enhanced pulse electric field electroporation for biomedical applications, Proceeding of the IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, July 2005.

    Google Scholar 

  14. N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett. 87, 173901–173901–3 (2005).

    Article  ADS  CAS  Google Scholar 

  15. M. A. Correa-Duarte, N. Wagner, J. A. Rojas-Chapana, C. Morsczeck, M. Thie, and M. Giersig, Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth, Nano Lett. 4(11), 2233–2236 (2004).

    Article  ADS  CAS  Google Scholar 

  16. S. Giannona, I. Firkowska, J. A. Rojas-Chapana, and M. Giersig, Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells, J. Nanosci. Nanotechnol. 7, 1679–1683 (2007).

    Article  CAS  Google Scholar 

  17. I. Firkowska, M. Olek, N. Pazos-Perez, J. A. Rojas-Chapana, and M. Giersig, Highly ordered MWNT-based matrixes: topography at the nanoscale conceived for tissue engineering, Langmuir 22(12), 5427–5434 (2006).

    Article  CAS  Google Scholar 

  18. E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, and J. P. Spatz, Cell Spreading and focal adhesion dynamics are regulated by spacing of integrin ligands, Biophys. J. 92(8), 2964–29 (2007).

    Article  ADS  CAS  Google Scholar 

  19. B. S. Harrison and A. Atala, Carbon nanotube applications for tissue engineering, Biomaterials 28(2), 344–53 (2007).

    Article  CAS  Google Scholar 

  20. X. Shi, J. L. Hudson, P. P. Spicer, J. M. Tour, R. Krishnamoorti, and A. G. Mikos, Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering, Biomacromolecules 7(7), 2237–2242 (2006).

    Article  CAS  Google Scholar 

  21. T. J. Webster and E. S. Ahn, Nanostructured biomaterials for tissue engineering bone, Adv. Biochem. Eng. Biotechnol. 103, 275–308 (2007).

    CAS  Google Scholar 

  22. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Bone cell proliferation on carbon nanotubes, Nano Lett. 6(3), 562–567 (2006).

    Article  ADS  CAS  Google Scholar 

  23. B. Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan, and J. Li, Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces, Small 2(1), 89–94 (2006).

    Article  CAS  Google Scholar 

  24. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, Carbon nanotube substrates boost neuronal electrical signalling, Nano Lett. 5(6), 1107–1110 (2005).

    Article  ADS  CAS  Google Scholar 

  25. T. J. Webster, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants, Nanotechnology 15, 48–54 (2004).

    Article  ADS  CAS  Google Scholar 

  26. M. P. Mattson, R. C. Haddon, and A. M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, Mol. Neurosci. 14(3), 175–182 (2000).

    Article  CAS  Google Scholar 

  27. T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons, Nano Lett. 7(2), 513–519 (2007).

    Article  ADS  CAS  Google Scholar 

  28. F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. B. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor array, Science 313, 110–1104 (2006).

    Article  CAS  Google Scholar 

  29. G. A. Silva, Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system, Surg. Neurol. 63, 301–306 (2005).

    Article  Google Scholar 

  30. M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes, Adv. Mater. 18(22), 2975–2979 (2006).

    Article  CAS  Google Scholar 

  31. M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, and N. A. Kotov, Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants, Adv. Mater. 17(22), 2663–2670 (2005).

    Article  CAS  Google Scholar 

  32. K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  33. A. J. Haes and R. P. Van Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124(35), 10596–10604 (2002).

    Article  CAS  Google Scholar 

  34. S. Kanno, Y. Yanagida, T. Haruyama, E. Kobatake, and M. Aizawa, Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization, J Biotechnol. 76, 207–214 (2000).

    Article  CAS  Google Scholar 

  35. D. Shenoy, W. Fu, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, and M. Amiji, Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery, Int. J. Nanomed. 1(1), 51–58 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Firkowska, I., Giannona, S., Rojas-Chapana, J.A., Luecke, K., Brüstle, O., Giersig, M. (2008). Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications. In: Giersig, M., Khomutov, G.B. (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6829-4_1

Download citation

Publish with us

Policies and ethics