Skip to main content

Are Rock Avalanches and Landslides Due to Large Earthquakes or Local Topographic Effects? A Case Study of the Lurøy Earthquake of August 31, 1819, A 3D Finite Difference Approach

  • Conference paper
Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries

The Lurøy earthquake of August 31, 1819, with MS ~ 5.8 is, by many colleagues, rated as the largest in NW Europe in historical times (pre-1900) and even up to present. Local shaking manifestations were most spectacular with rock, stone and mud avalanches, mast-high waves in nearby Rana fjord and even liquefaction was reported. Most surprisingly, at epicentral distances exceeding 100 km except for Stockholm 800 km away, very few macroseismic observations are available. Another peculiarity was the lack of any significant housing damage even in the Lurøy parish itself. In a recent paper, we postulated that the earthquake was of moderate size, reestimated at MS ~ 5.1, but of shallow depth between 5 and 10 km causing the intense local shaking. In this article, we add a new dimension to the many Lurøy earthquake studies namely simulating the seismic wavefield response of Lurøy itself and adjacent areas characterized by steep topographic reliefs. We use a 3D finite difference scheme and compute ground motion in the 2–8 Hz band for a shear wave source with a focal depth of 5 km. Water covered areas are replaced by crystalline crust due to the sparsity of dense bathymetric data.

Main results are that the topography of the Lurøy, close to the mountain peak at 685 m, causes wavefield amplification by a factor of 20 and even stronger. Further away in the Rana fjord and surrounding areas, we also got strong amplification in particular where the relief is sharpest thus explaining triggering of avalanches in a quantitative manner. In other words, macroseismic observations would be biased upward due to the topographic focusing effects and unless properly corrected for may increase the final earthquake magnitude estimate. We take these results to strongly support our claim that the historic Lurøy earthquake was of moderate size of MS ~ 5.1 and not at MS ~ 6.0 class as claimed by many colleagues. The largest magnitude estimates stem from including outlier observations in Kola and Stockholm. Finally, downscaling of maximum earthquake magnitude would also lower the seismic risk levels significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambraseys, N. N., 1985. The seismicity of Western Scandinavia. Earthq. Eng. Struct. Dyn. 13, 361–399.

    Article  Google Scholar 

  • Bannister, S. C., Husebye, E. S., Ruud, B. O., 1990. Teleseismic P-coda analyzed by three component and array technique–deterministic location of topographic P-to-Rg scattering near the NORESS array. Bull. Seism. Soc. Am. 80, 1969–1986.

    Google Scholar 

  • Bungum, H, Hokland, B. K., Husebye, E. S. Ringdal, F., 1979. An exceptional intraplate earthquake sequence in Meløy, Northern Norway. Nature, 280, 5717, 32–35.

    Article  Google Scholar 

  • Bungum, H., Olesen O., 2005. The 31st of August 1819 Lurøy Earthquake revisited. Norwegian J. Geology, 85, 245–252.

    Google Scholar 

  • Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M., 1985. Short note on a non-reflecting boundary condition for discrete acoustic-wave and elastic-wave equations. Geophysics, 50, 705–708.

    Article  Google Scholar 

  • Geli, L., Bard, P. Y., Jullien, B., 1988. The effect of topography on earthquake ground motion: a review and new results. Bull. Seism. Soc. Am. 78, 42–63.

    Google Scholar 

  • Grunthal, G., Wahlstrøm, R., 2003. A Mw based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J. of Seismology, 7, 507–531.

    Article  Google Scholar 

  • Heltzen, I. A., 1834. Ranens beskrivelse. Rana Museum og Historielag. Mo i Rana, 290.

    Google Scholar 

  • Hestholm, S. O., Husebye, E. S., Ruud, B. O., 1994. Seismic wave propagation in complex crust–upper mantle media using 2D finite difference synthetics. Geophys. J. Int. 118, 643–670.

    Article  Google Scholar 

  • Hestholm, S. O., Ruud, B. O., 1998. 3-D finite difference elastic wave modeling including surface topography. Geophysics, 63, 613–622.

    Article  Google Scholar 

  • Hestholm, S., Moran, M., Ketcham, S., Anderson, T., Dillen, M., McMechan, G., 2006. Effects of free-surface topography on moving-seismic-source modeling. Geophysics, 71, T159–T166.

    Article  Google Scholar 

  • Hestholm, S. O., Ruud, B. O., 2002. 3D free-boundary conditions for coodinate-transform finite-difference seismic modeling. Geophys. Prosp. 50, 463–474.

    Article  Google Scholar 

  • Hicks, E.C., 1996. Crustal stresses in Norway and surrounding areas as derived from earthquake focal mechanism solutions and in-situ stress measurements. M.Sc. Thesis, Dept. of Geology, UoOslo, Oslo, Norway, 164 pp.

    Google Scholar 

  • Hicks, E. C., Bungum, Lindholm, C. D., 2000. Seismic activity, inferred crustal stresses and seismotectonics in the Rana region, northern Norway. Quaternary Science Reviews, 19, 1423–1436.

    Article  Google Scholar 

  • Husebye, E. S., 2005. Comments on the Lurøy earthquake controversy. Norwegian J. Geology 85, 253–256.

    Google Scholar 

  • Husebye, E. S., Kebeasy, T. R. M., 2004. A re-assessment of the 31st of August 1819 Lurøy earthquake–Not the largest in NW Europe. Norwegian J. Geol. 84, 57–66.

    Google Scholar 

  • Husebye, E. S., Kebeasy, T. R. M., 2005. Historical earthquakes in Fennoscandia–how large?. Physics Earth Planetary Interior 149, 355–359.

    Article  Google Scholar 

  • Husebye, E. S., Mäntyniemi, P., 2005. The Kaliningrad, West Russia earthquake on the 21st of September–surprise events In a very low-seismicity area. Physics Earth Planetary Interiors, 153, 227–236.

    Article  Google Scholar 

  • Kebeasy, T. R. M., Husebye, E. S., 2003a. A finite-difference approach for simulating ground responses in sedimentary basins: qualitative modeling of the Nile Valley, Egypt. Geophy. J. Int. 154, 913–924.

    Article  Google Scholar 

  • Kebeasy, T. R. M., Husebye, E. S., 2003b. Revising the 1759 Kattegat earthquake questionnaires using synthetic wave field analysis. Physics of Earth & Planetary Interiors, 139, 269–284.

    Article  Google Scholar 

  • Keilhau, B. M., 1836. Efterretninger om jordkjælv i Norge. Magasin for Naturvidenskaperne, 12, 83–165.

    Google Scholar 

  • Kijko, A., 2008. Data driven probabilistic seismic hazard assement procedure for regions with uncertain seismogenic zones. In E.S. Husebye (ed.) Earthquake Monitoring and Seismic Hazard in Balkan Countries. Springer Publishing, Berlin, 237–251. ibid.

    Chapter  Google Scholar 

  • Kjellen, R., 1910. Sveriges jordskalf. Forsøk til en svensk landsgeografi. Gøteborgs Høgskolas Årsskrift, 15, 1–211.

    Google Scholar 

  • Kinck, J. J., Husebye, E. S., Larsson, F. R., 1993. The moho depth distribution in Fennoscandia and the regional tectonic evolution from Archean to Permian times. Precambrian Res. 64, 23–51.

    Article  Google Scholar 

  • Kliche, C. A., 1999. Rock slope stability. Socity for Mining, Metallurgy, and Exploration (SME), Inc., Littleton, CO.

    Google Scholar 

  • Kolderup, C. F., 1913. Norges jordskjKlv med slrlig hensyn til deres utbredelse i rum og tid. Bergen Museum Aarbok, 8, 152.

    Google Scholar 

  • Kramer, S. L., 1996. Geotechnical earthquake engineering Prentice-Hall, New York 653 pp.

    Google Scholar 

  • Mäntyniemi, P., Husebye, E. S, Kebeasy, T. R. M., Nikonov, A. A., Nikulin, V., Pacesa, A., 2004. State-of-the-art of historical earthquake research in Fennoscandia and the Baltic Republics. Annali Di Geofisica, 47, 611–619.

    Google Scholar 

  • Moczo, P., Rovelli, A., Labak, P., Malagnini, L., 1995. Seismic response of the geological structure underlying Roman Colosseum. Annali di Geofisica 38, 939–956.

    Google Scholar 

  • Moczo, P., Lucka, M., Kristek, J., Kristekova, M., 1999. 3D displacement dinite differences and a combined memory optimization. Bull. Seismol. Soc. Am. 89, 69–79.

    Google Scholar 

  • Mokrov, E., Chernouss, P., Fedorenko, Yu. V., Husebye, E. S., 2000. The influence of seismic effects on avalanche release. In Proceed. Int. Snow Sci. Workshop ISSW-2000, Big Sky, MT, 338–341.

    Google Scholar 

  • Muir Wood, R., 1989. The Scandinavian earthquakes of 22 December 1759 and 31 August 1819, Disasters, 12, 223–236.

    Article  Google Scholar 

  • Olesen. O., Dehls, J., Olsen, L., Blikra, L. H., Rise, L., Bungum, H., Lindholm, C. D., Hicks, E., Riis, F., Bockmann, L., 1999. Mor Norge rører på seg, GEO 2, 12–17.

    Google Scholar 

  • Olsen, K. B., Nigbor, R., Konno, T., 2000. 3D viscoelastic wave propagation in the upper Borrego Valley, California, constrained by Borehole and surface data. Bull. Seis. Soc. Am. 90, 134–150.

    Article  Google Scholar 

  • Pitarka, A., 1999. 3D elastic finite difference modeling of seismic wave propagation using staggered-grid non-uniform spacing. Bull. Seism. Soc. Am. 89, 54–68.

    Google Scholar 

  • Selby, M. J., 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift fur Geomorphologie, 24, 31–51.

    Google Scholar 

  • Stewart, I. S., Sauber, J., Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quarterly Sci. Rev. 19, 1367–1389.

    Article  Google Scholar 

  • Wahlstrøm, R., 2004. Two large historical earthquakes in Fennoscandia still large. Phys. Earth Planet. Inter. 145, 253–258.

    Article  Google Scholar 

  • Wu, P., Johnston, P., Lambeck, K., 1999. Postglacial rebound and fault instability in Fennoscandia. Geophys. J. Int. 139, 657–670.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Kebeasy, T.R.M., Husebye, E.S., Hestholm, S. (2008). Are Rock Avalanches and Landslides Due to Large Earthquakes or Local Topographic Effects? A Case Study of the Lurøy Earthquake of August 31, 1819, A 3D Finite Difference Approach. In: Husebye, E.S. (eds) Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries. NATO Science Series: IV: Earth and Environmental Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6815-7_18

Download citation

Publish with us

Policies and ethics