Skip to main content

Detrimental Genetic Effects of Interactions Between Reared Strains and Wild Populations of Marine and Anadromous Fish and Invertebrate Species

  • Chapter
Aquaculture in the Ecosystem

Cultured strains of marine and anadromous species reared for aquaculture can be either inadvertently (as in farm escapes) or deliberately (as in stocking/ ranching) introduced into the wild, where they may interact with wild conspecifics or other species. This chapter concentrates on the potentially detrimental genetic aspects of these interactions, largely in the context of species cultured in Europe but considering general principles, which have worldwide applicability. Most previous experimental work in the area has involved Atlantic salmon, which has the highest production of any finfish produced in Europe. These investigations have shown generally detrimental results for wild salmon populations, when interactions occur with reared strains. The various European species which might be affected by cultured introgressions (the major aquaculture species) are then considered under several headings: genetic composition of cultured strains compared with wild populations; modes of introduction into the wild; direct and indirect genetic interactions with wild populations/species; consequences of such interactions; establishing the severity of effects of wild/reared interactions with different species, utilising opportunist situations and field experiments; and, methods such as induction of sterility in reared strains to reduce detrimental effects. Relative risks for wild populations of the major aquaculture species are then considered, and general and specific genetic recommendations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnalt A-L, Jørstad KE, Kristiansen T, Nøstvold E, Farestveit E, Næss H, Paulsen OI, Svåsand T (2004) Enhancing the European lobster (Homarus gammarus) stock at Kvitsøy Islands: Perspectives of rebuilding Norwegian stocks. In: Leber KM, Kitada S, Blankenship HL, Svåsand T (eds.), Stock enhancement and sea ranching: developments, pitfalls and opportunities. Blackwell, Oxford, pp. 415–426

    Google Scholar 

  • Agnalt AL, van der Meeren GI, Jorstad KE, Naess H, Farestveit E, Nostvold E, Svasand T, Korsoen E, Ydstebo L (1999) Stock enhancement of European lobster (Homarus gammarus): a large-scale experiment off South Western Norway. In: Howell BR, Moksness E, Svasand T (eds.), Stock enhancement and sea ranching. Fishing News Books, pp. 401–419

    Google Scholar 

  • Andrews JD (1988) Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effect on the oyster industry. American Fisheries Society Special Publications, 18: 47–63

    Google Scholar 

  • Aoyagi K, Dijkstra JM, Xia C, Denda I, Ototake M, Hashimoto K, Nakanishi T (2002) Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). Journal of Immunology, 168: 260–273

    CAS  Google Scholar 

  • Arkush KD, Giese AR, Mendonca HL, McBride AM, Marty GD, Hedrick PW (2002) Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Canadian Journal of Fisheries and Aquatic Sciences 59: 966–975

    Article  Google Scholar 

  • Armitage D (2006) Unpublished M.Sc. thesis, University College Cork, Ireland

    Google Scholar 

  • Bakke TA, Jansen PA, Hansen LP (1990) Differences in the host resistance of Atlantic salmon, Salmo salar L., stocks to the monogenean, Gyrodactylus salaris, Malmberg, 1957. Journal of Fish Biology 30: 713–721

    Google Scholar 

  • Beebee T, Rowe G (2004) An introduction to molecular ecology. Oxford University Press, New York, 346 pp

    Google Scholar 

  • Bekkevold D, Hansen MM, Nielsen EE (2006) Genetic impact of gadoid culture on wild fish populations: predictions, lessons from salmonids, and possibilities for minimising adverse effects. ICES Journal of Marine Sciences 63: 198–208

    Article  Google Scholar 

  • Bekkevold D, Andre C, Dahlgren TG, Clausen LAW, Torstensen E, Mosegaard H, Carvahlo GR, Christensen TB, Norlinder E, Ruzzante DE (2005) Environmental correlates of population differentiation in Atlantic herring. Evolution 59: 2656–2668

    PubMed  Google Scholar 

  • Benoit E, Allen SK, Guo X (2000) Delayed meiosis and polar body release in eggs of triploid Pacific oysters, Crassostrea gigas, in relation to tetraploid production. Journal of Experimental Marine Biology and Ecology 248: 151–161

    Article  Google Scholar 

  • Brown BL, Butt AJ, Shelton SW, Meritt D, Paynter KT (2005a) Resistance of Dermo in eastern oysters Crassostrea virginica (Gmelin), of North Carolina but not Chesapeake Bay heritage. Aquaculture Research 36: 1391–1399

    Article  Google Scholar 

  • Brown BL, Butt AJ, Meritt D, Paynter KT (2005b) Evaluation of resistance to Dermo in eastern oyster strains tested in Chesapeake Bay. Aquaculture Research 36: 1544–1554

    Article  Google Scholar 

  • Boudry P, Heurtebise S, Collet B, Cornette F, Gérard A (1998) Differentiation between populations of the Portuguese oyster Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. Journal of Experimental Marine Biology and Ecology 226: 279–291

    Article  Google Scholar 

  • Clifford S, McGinnity P, Ferguson A (1998) Genetic changes in Atlantic salmon (Salmo salar L.) in NW Irish rivers resulting from escapes of adult farm salmon. Canadian Journal of Fisheries and Aquatic Sciences 55: 358–363

    Article  Google Scholar 

  • Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology 69: 21–47

    Article  Google Scholar 

  • Coughlan JP, Imsland AK, Galvin PT, FitzGerald RD, Naevdal G, Cross TF (1998) Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: a preliminary study. Journal of Fish Biology 52: 916–922

    Article  CAS  Google Scholar 

  • Coughlan J, McGinnity P, O’Farrell B, Dillane E, Diserud O, de Eyto E, O’Farrell K, Whelan K, Stet RJM, Cross TF (2006) Temporal variation in an immune response gene (MHC I) in anadromous Salmo trutta in an Irish river before and during aquaculture activities. ICES Journal of Marine Science 63: 1248–1255

    Article  CAS  Google Scholar 

  • Cross TF, niChallanain DG (1991) Genetic characterisation of Atlantic salmon (Salmo salar) lines farmed in Ireland. Aquaculture 98: 209–216

    Article  Google Scholar 

  • Cross TF, King J (1983) Genetic effects of hatchery rearing in Atlantic salmon. Aquaculture 33: 33–40

    Article  Google Scholar 

  • Cross T, Bailey J, Friars G, O’Flynn F (1993) Maintenance of genetic variability in reared Atlantic salmon (Salmo salar) stocks. In: Mills DH (ed.), Salmon in the sea, pp. 356–366

    Google Scholar 

  • Cross TF, McGinnity P, Coughlan J, Dillane E, Ferguson A, Koljonen M-L, Milner N, O’Reilly P, Vasemagi A (2007) Genetic considerations for Stocking and Ranching of Atlantic salmon. In: Verspoor E, Stradmeyer L, Nielsen JL (eds.), The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford, pp. 325–356

    Google Scholar 

  • Culloty SC, Novoa B, Pernas M, Longshaw M, Mulcahy MF, Feist SW, Figueras A (1999) Susceptibility of a number of bivalve species to the protozoan parasite Bonamia ostreae and their ability to act as vectors for this parasite. Diseases of Aquatic Organisms 37: 73–80

    Article  Google Scholar 

  • Culloty SC, Cronin MA, Mulcahy MF (2004) Potential resistance of a number of populations of the oyster Ostrea edulis to the parasite Bonamia ostreae. Aquaculture 237: 41–58

    Article  Google Scholar 

  • Devlin RH, D’Andrade M, Uh M, Biagi CA (2004) Population effects of GH transgenic salmon are dependant upon food availability and genotype by environment interactions. Proceedings of National Academy of Sciences USA 101: 9303–9308

    Article  CAS  Google Scholar 

  • Devlin RH, Yesaki TY, Biagi CA, Donaldson EM, Swanson P, Chan WK (1994) Extraordinary salmon growth. Nature 371: 209–210

    Article  Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology 56: 461–473

    Article  CAS  Google Scholar 

  • Duchesne P, Godbout MH, Bernatchez L (2002) PAPA (package for the analysis of parental allocation): a computer program for simulated and real parental allocation. Molecular Ecology Notes 2:191–193

    Article  CAS  Google Scholar 

  • de Eyto E, McGinnity P, Consuegra S, Coughlan J, Tufto J, Farrell K, Jordan WC, Cross T, Megens H-J, Stet R (2007) Natural selection acts on Atlantic salmon MHC variability in the wild. Proceedings of the Royal Society B 274: 861–869

    Article  PubMed  CAS  Google Scholar 

  • Einum S, Fleming I (1997) Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. Journal of Fish Biology 50: 634–651

    Article  Google Scholar 

  • Ferguson A, Fleming IA, Hindar K, Skaala Ø, McGinnity P, Cross T, Prodöhl P (2007) Farm Escapes. In: Verspoor E, Stradmeyer L, Nielsen JL (eds.), The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford, pp. 357–398

    Google Scholar 

  • FAO (2007) State of World Fisheries and Aquaculture, Food and Agriculture Organization of the United Nations, Rome 2007

    Google Scholar 

  • Fevolden SE, Pogson GH (1997) Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and north-east Arctic populations of Atlantic cod. Journal of Fish Biology 51: 895–908

    CAS  Google Scholar 

  • Fischer W (1995) Ecological genetics of mussels (Mytilus edulis and M. galloprovincialis) farmed in suspended culture in south-west Ireland. M.Sc. thesis, University College Cork, Ireland, 125 pp

    Google Scholar 

  • Fleming IA, Einum S (1997) Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES Journal of Marine Science 54: 1051–1063

    Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proceedings of the Royal Society B 267: 1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Ford SE, Haskin HH (1987) Infection and mortality patterns in strains of oysters Crassostrea virginica selected for resistance to the parasite Haplosporidium nelsoni (MSX). Journal of Protozoology 73: 368–376

    CAS  Google Scholar 

  • Gjedrem T (1999) Genetic improvement of cold water fish species. Aquaculture Research 31: 25–33

    Article  Google Scholar 

  • Gosling EM (2003) Bivalve molluscs: biology, ecology and culture. Fishing News Books, 443 pp

    Google Scholar 

  • Grimholt U, Drablos F, Jorgensen SM, Hoyheim B, Stet RJM (2002) The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics 54: 570–581

    Article  PubMed  CAS  Google Scholar 

  • Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebø S, Stet RJM (2003) MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55(4):210–219

    Article  PubMed  CAS  Google Scholar 

  • Guenguen Y, Cadoret JP, Flament D, Barreau-Roumiguiere C, Girardot AL, Garnier J, Hoareau A, Bachere E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria challenged oyster Crassostrea virginica. Gene 303: 139–145

    Article  CAS  Google Scholar 

  • Hansen LP (2006) Migration and survival of farmed Atlantic salmon (Salmo salas L.) released from two Norwegian fish farms. ICES Journal of Marine Science 63: 1211–1217

    Article  Google Scholar 

  • Hindar K, Balstad T (1994) Salmonid culture and interspecific hybridization. Conservation Biology 8: 881–882

    Article  Google Scholar 

  • Hindar K, Fleming IA, McGinnity P, Diserud O (2006) Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES Journal of Marine Science 63: 1234–1247

    Article  CAS  Google Scholar 

  • Hislop JRG, Webb JH (1992) Escaped farmed Atlantic salmon (Salmo salar) feeding in Scottish coastal waters. Aquaculture and Fisheries Management 23: 721–723

    Google Scholar 

  • Hutchinson WF, Carvalho GR, Rogers SI (2001) Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Marine Ecology Progress Series 223: 251–260

    Article  Google Scholar 

  • Hutchinson WF, Oosterhout CV, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proceedings of the Royal Society of London, Series B, Biological Sciences 270: 2125–2132

    Article  Google Scholar 

  • Imsland AK, Jónsdóttir ÓDB (2002) Is there a genetic basis to growth in Atlantic cod? Fish and Fisheries 3: 36–52

    Article  Google Scholar 

  • Jonasson J, Gjerde B, Gjedrem T (1997) Genetic parameters for return rate and body weight in sea ranched Atlantic salmon. Aquaculture 154: 219–231

    Article  Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Molecular Ecology 12: 2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2006) Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES Journal of Marine Science 63: 1162–1181

    Article  Google Scholar 

  • Jorstad KJ, van der Meeren T, Paulsen OI, Thomsen T, Svasand T (2006) “Escapement” of eggs from farmed cod spawning in net pens and offspring intermingling with natural spawned larvae. Sea ranching and stock enhancement symposium. Seattle, USA, September 2006

    Google Scholar 

  • Jorstad KE, Paulsen OI, Naevdal G, Thorkildsen S (1994) Genetic studies of cod, Gadus morhua L. in Masfjorden, western Norway: comparison between the local stock and released, artificially reared cod. Aquaculture and Fisheries Management 25:77–91

    Google Scholar 

  • Jorstad KE, Prodohl PA, Kristiansen TS, Hughes M, Farestveit E, Taggart JB, Agnalt A-L, Ferguson A (2005) Communal larval rearing of European lobster (Homarus gammarus): family identification by microsatellite DNA profiling and offspring fitness comparisons. Aquaculture 247: 275–285

    Article  CAS  Google Scholar 

  • Langefors Å, von Schantz T, Widegren B (1998) Allelic variation of Mhc class II in Atlantic salmon: a population genetic analysis. Heredity 80:568–575

    Article  CAS  Google Scholar 

  • Launey S, Barre M, Gerard A, Naciri-Graven Y (2001) Population bottleneck and effective size in Bonamia ostreae resistant populations of Ostreae edulis as inferred by microsatellite markers. Genetic Research 78 : 259–270

    Article  CAS  Google Scholar 

  • Leber KM, Kitada S, Blankenship HL, Svasand T (2004) Stock enhancement and sea ranching: developments, pitfalls and opportunities. Blackwell, Oxford. 2nd edn, 562 pp

    Google Scholar 

  • Lohm J, Grahn M, Langefors Å, Andersen O, Storset A, von Schantz T (2002) Experimental evidence for major histocompatibility complex–allele-specific resistance to a bacterial infection. Proceedings of the Royal Society B 269: 2029–2034

    Article  PubMed  CAS  Google Scholar 

  • Mank JE, Promislow DEL, Avise JC (2006) Evolution of alternative sex-determining mechanisms in teleost fishes. Biological Journal of the Linnean Society 87: 83–93

    Article  Google Scholar 

  • Mantovani S, Castaldelli G, Rossi R, Fano EA (2006) The infaunal community in experimentally seeded low and high density Manila clam (Tapes philippinarum) beds in a Po River Delta lagoon, Italy. ICES Journal of Marine Science 63: 860–866

    Article  Google Scholar 

  • Marteil L (1976) La conchyliculture française. 2. Biologie de l’huître et de la moule. Rev. Trav. Inst. Pêches marit. 40: 149–345

    Google Scholar 

  • Marty GD, Bower SM, Clarke KR, Meyer G, Lowe G, Osborn AL, Chow EP, Hannah H, Byrne S, Sojonky K, Robinson JH (2006) Histopathology and a real-time PCR assay for detection of Bonamia ostreae in Ostrea edulis cultured in western Canada. Aquaculture 261: 33–42

    Article  CAS  Google Scholar 

  • McElligott EA, Maguire TMF, Cross TF (1987) The amount and nature of electrophoretically-detectable genetic polymorphism in hatchery reared Atlantic salmon (Salmo salar L.) in Ireland. Conseils Internationale pour l’Exploration de la Mer CM Doc. 1987/M:13, Ref E, 10 pp

    Google Scholar 

  • McGinnity P, de Eyto E, Cross T, Coughlan J, Ferguson A (in press) Population specific smolt development, migration and maturity schedules in Atlantic salmon in a natural river environment. Proceedings of the 7th International Workshop on Salmonid Smoltification held in Tono, Japan, 2005. Aquaculture (Special Issue)-in press

    Google Scholar 

  • McGinnity P, Prodöhl P, O’Maoiléidigh N, Hynes R, Cotter D, Baker N, O’Hea B, Ferguson A (2004) Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. Journal of Fish Biology 65 (Supplement A): 173–187

    Article  Google Scholar 

  • McGinnity P, Stone C, Taggart JB, Cooke D, Cotter D, Hynes R, McCamley C, Cross T, Ferguson A (1997) Genetic impact of escaped farmed salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES Journal of Marine Science 54: 998–1008

    Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A, Hynes R, O’Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society B 270: 2443–2450

    Article  PubMed  Google Scholar 

  • McMeel OM, Hoey EM, Ferguson A (2001) Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Molecular Ecology 10: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Miller KM, Shaorang L, Ming TJ, Kaukinen KH, Schulze AD (2006) The salmonid MHC class I: more ancient loci uncovered. Immunogenetics 58: 571–589

    Article  PubMed  CAS  Google Scholar 

  • Naciri-Graven Y, Martin AG, Baud JP, Renault T, Gerard A (1998) Selecting the flat oyster Ostreae edulis (L.) for survival when infected with the parasite Bonamia ostreae. Journal of Experimental Marine Biology and Ecology 224: 91–107

    Article  Google Scholar 

  • Naciri-Graven Y, Haure J, Gerard A, Baud JP (1999) Comparative growth of Bonamia ostreae resistant and wild flat oyster Ostrea edulis in an intensive system II Second year of the experiment. Aquaculture 171: 195–208

    Article  Google Scholar 

  • Nell JA, Perkins B (2006) Evaluation of the progeny of third generation Sydney rock oyster Saccostrea glomerata (Gould 1850) breeding lines for resistance to QX disease Marteilia sydneyi and winter mortality Bonamia roughleyi. Aquaculture Research 37: 693–700

    Article  Google Scholar 

  • Norris AT, Bradley DG, Cunningham EP (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180: 247–264

    Article  Google Scholar 

  • O’Leary DB, Coughlan J, Dillane E, McCarthy TV, Cross TF (2007) Microsatellite variation in cod Gadus morhua throughout its geographic range. Journal of Fish Biology 70: 310–335

    Article  CAS  Google Scholar 

  • Rajagopal S, van der Velde G, Jansen J, van der Gaag M, Atsma G, Janssen-Mommen J, Polma H, Jenner HA (2005) Thermal tolerance of the invasive oyster Crassostrea gigas: feasibility of heat treatment as an antifouling option. Water Research 39: 4335–4342

    Article  PubMed  CAS  Google Scholar 

  • Reece KS, Bushek D, Hudson KL, Graves JE (2001) Geographic distribution of Perkinsus marinus genetic strains along the Atlantic and Gulf coasts of the USA. Marine Biology 139: 1047–1055

    Article  Google Scholar 

  • Reisenbichler RR, Rubin SP, Wetzel L, Phelps SR (2004) Natural selection after release from a hatchery leads to domestication in steelhead, Oncorhynchus mykiss. In: KM Leber, HL Blankenship, S Kitada, T Svåsand (Editor), Stock enhancement and sea ranching: developments, pitfalls and opportunities, 2nd edn. Blackwell, Oxford, pp. 371–383

    Google Scholar 

  • Roberge C, Einum S, Guderly H, Bernatchez L (2006) Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Molecular Ecology 15: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Ruzzante DE, Taggart CT, Cook D (1999) A review of evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence. Fisheries Research 43: 79–97

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences (USA) 74: 5463–5467

    Article  CAS  Google Scholar 

  • Sato A, Figueroa F, Murray BW, Malaga-Trillo E, Zaleska-Rutczynska Z, Sultmann H, Toyosawa S, Wedekind C, Steck N, Klein J (2000) Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics 51:108–116

    Article  PubMed  CAS  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MD, Hedrick RP, Nehring RB, Stet RJ, Secombes C, Parham P (2001) Modes of salmonid MHC Class I and II evolution differ from the primate paradigm. Journal of Immunology 166: 3297–3308

    CAS  Google Scholar 

  • Shumway SE, Parsons GJ (eds.) (2006) Scallops: Biology, ecology and aquaculture (2nd edn). In: Developments in aquaculture and fisheries science, 35, Elsevier, 1406 pp

    Google Scholar 

  • Stefansson MO, Coughlan J, Cross TF (2001) Microsatellite DNA variation in reared strains of turbot (Scophthalmus maximus) and Atlantic halibut (Hippoglossus hippoglossus) compared with wild samples. Conseils Internationale pour l’Exploration de la Mer CM Doc. 2001/L:16, 29 pp

    Google Scholar 

  • Stet RJM, deVries B, Mudde K, Hermsen T, van Heerwaarden J, Shum B P, Grimholt U (2002) Unique haplotypes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics 54: 320–331

    Article  PubMed  CAS  Google Scholar 

  • Tanguy A, Guo X, Ford SE (2004) Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Triantaphyllidis A, Apostolidis A, Katsares V, Kelly E, Hughes M, Jorstad K, Tsolou R, Hynes R, Triantaphyllidis C (2005) Mitochondrial DNA variation in the European lobster throughout the range. Marine Biology 146:223–235

    Article  CAS  Google Scholar 

  • Uki N (2006) Stock enhancement of the Japanese scallop, Patinopecten yessoensis in Hokkaido. Fisheries Research 80: 62–66

    Article  Google Scholar 

  • Van Banning P (1987) Further results on the Bonamia ostreae challenge tests in Dutch oyster culture. Aquaculture 67: 191–194

    Article  Google Scholar 

  • Verspoor E (1988) Reduced genetic variability in first generation hatchery populations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 45:1686–1690

    Article  Google Scholar 

  • Verspoor E, Stradmyer L, Nielsen JL (eds.) (2007) The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford, 500 pp

    Google Scholar 

  • Waples R (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89: 438–450

    Article  Google Scholar 

  • Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. Journal of Evolutionary Biology 16: 224–232

    Article  PubMed  CAS  Google Scholar 

  • Worm B, Barbier E B, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790

    Article  PubMed  CAS  Google Scholar 

  • Youngson AF, Webb JH, Thompson CE, Knox D (1993) Spawning of escaped farmed Atlantic salmon (Salmo salar): hybridization of females with brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 50: 1986–1990

    Article  Google Scholar 

  • Youngson AF, Dosdat A, Saroglia M, Jordan WC (2001) Genetic interactions between marine finfish species in European aquaculture and wild conspecifics. Journal of Applied Ichthyology 17:153–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Cross, T.F. et al. (2008). Detrimental Genetic Effects of Interactions Between Reared Strains and Wild Populations of Marine and Anadromous Fish and Invertebrate Species. In: Holmer, M., Black, K., Duarte, C.M., Marbà, N., Karakassis, I. (eds) Aquaculture in the Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6810-2_4

Download citation

Publish with us

Policies and ethics