Skip to main content

Part of the book series: Analog Circuits and Signal Processing Series ((ACSP))

  • 933 Accesses

The analog designer frequently characterizes the behavior of a system using frequency-domain properties. Therefore, representation and simulation of analog and mixed-signal systems directly in the frequency domain can naturally serve as base elements for building generic behavioral models. For efficient use in a design flow, such models should be suited both for time-efficient evaluation of the model via simulation, and for analysis to identify both intended and parasitic signal flows in an architecture. To be able to write frequency-domain generic functions according to these requirements, a mathematical framework is presented in this chapter. Together with a specific interaction scheme for a wide class of front-end architectures, frequency-domain generic behavioral models for efficient top-down design are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Abidi. RF CMOS Comes of Age. IEEE Journal of Solid-State Circuits, 39(4):549–561, Apr. 2004.

    Article  Google Scholar 

  2. G. Arfken. Mathematical Methods for Physicists. University Press, San Diego, 1985.

    Google Scholar 

  3. R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Book Company, New York, 1978.

    Google Scholar 

  4. L. W. Couch II. Digital and Analog Communication Systems. Prentice-Hall, New Jersey, 1997.

    Google Scholar 

  5. J. Crols, S. Donnay, M. Steyaert, and G. Gielen. A High-Level Design and Optimization Tool for Analog RF Receiver Front-Ends. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 550–553, San Jose, Nov. 1995.

    Google Scholar 

  6. J. Crols and M. Steyaert. CMOS Wireless Transceiver Design. Springer, Dordrecht, 1997.

    Google Scholar 

  7. J. Crols and M. S. J. Steyaert. A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology. IEEE Journal of Solid-State Circuits, 30(12):1483–1492, Dec. 1995.

    Article  Google Scholar 

  8. J. Crols and M. S. J. Steyaert. Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers. IEEE Trans. on Circuits and Systems—II: Analog and Digital Signal Processing, 45(3): 269–282, Mar. 1998.

    Article  Google Scholar 

  9. P. Dobrovolný, G. Vandersteen, P. Wambacq, and S. Donnay. Analysis and Compact Behavioral Modeling of Nonlinear Distortion in Analog Communication Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(9):1215–1227, Sept. 2003.

    Article  Google Scholar 

  10. P. Dobrovolný, G. Vandersteen, P. Wambacq, and S. Donnay. Analysis and White-Box Modeling of Weakly Nonlinear Time-Varying Circuits. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 624–629, Munich, Mar. 2003.

    Google Scholar 

  11. P. Dobrovolný, P. Wambacq, G. Vandersteen, S. Donnay, M. Engels, and I. Bolsens. Generation of Multicarrier Complex Lowpass Models of RF ICs. In IEEE MTT-S Int. Microwave Symp., volume 1, pages 419–422, Phoenix, May 2001.

    Google Scholar 

  12. S. Donnay and G. Gielen. System-Level Analysis of RF Transceiver Integrated Circuits. In IEEE Southwest Symp. on Mixed-Signal Design, pages 37–42, Tucson, Apr. 1999.

    Google Scholar 

  13. A. Dunlop, A. Demir, P. Feldmann, S. Kapur, D. Long, R. Melville, and J. Roychowdhury. Tools and Methodology for RF IC Design. In IEEE/ACM Design Automation Conf., pages 414–420, San Francisco, June 1998.

    Google Scholar 

  14. P. Feldmann and J. Roychowdhury. Computation of circuit waveform envelopes using an efficient, matrix-decomposed harmonic balance algorithm. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 295–300, San Jose, Nov. 1996.

    Google Scholar 

  15. J. Fenk. RF-Trends in Mobile Communication. In IEEE European Solid-State Circuits Conf., pages 21–27, Estoril, Sept. 2003.

    Google Scholar 

  16. F. Fernández, A. Rodriguez-Vázquez, J. L. Huertas, and G. G. E. Gielen, editors. Symbolic Analysis Techniques: Applications to Analog Design Automation. Wiley, New York, 1997.

    Google Scholar 

  17. A. Gelb and W. E. V. Velde. Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill, New York, 1968.

    Google Scholar 

  18. M. J. Gingell. Single Sideband Modulation using Sequence Asymmetric Polyphase Networks. Electrical Communication Magazine, 48(1–2): 21–25, 1973.

    Google Scholar 

  19. I. A. Glover and P. M. Grant. Digital Communications. Prentice-Hall, Essex, 2004.

    Google Scholar 

  20. M. Gourary, S. Ulyanov, M. Zharov, and S. Rusakov. New Methods for Speeding up Computation of Newton Updates in Harmonic Balance. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 61–64, San Jose, Nov. 1999.

    Google Scholar 

  21. R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  22. L. P. Huelsman, editor. Linear Circuit Analysis. In W.-K. Chen, editor, The Circuits and Filters Handbook, Section IV. CRC Press, Salem, 1995.

    Google Scholar 

  23. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan. Simulation of Communication Systems. Plenum, New York, 1992.

    Google Scholar 

  24. K. S. Kundert. Introduction to RF Simulation and Its Application. IEEE Journal of Solid-State Circuits, 34(9):1298–1319, Sept. 1999.

    Article  Google Scholar 

  25. K. S. Kundert and A. Sangiovanni-Vincentelli. Simulation of Nonlinear Circuits in the Frequency Domain. IEEE Trans. on Computer-Aided Design, 5(4):521–535, Oct. 1986.

    Article  Google Scholar 

  26. K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli. Steady-State Methods for Simulating Analog and Microwave Circuits. Kluwer Academic, Norwell, 1990.

    Google Scholar 

  27. Kyeongho Lee, Joonbae Park, Jeong-Woo Lee, Seung-Wook Lee, Hyung Ki Huh, Deog-Kyoon Jeong, and Wonchan Kim. A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique. IEEE Journal of Solid-State Circuits, 36(5):800–809, May 2001.

    Article  Google Scholar 

  28. E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings of the IEEE, 83(5):773–799, May 1995.

    Article  Google Scholar 

  29. T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  30. S. Lipschutz. Schaum’s Outline of Theory and Problems of Linear Algebra. McGraw-Hill, New York, 1968.

    Google Scholar 

  31. D. Long, R. Melville, K. Ashby, and B. Horton. Full-Chip Harmonic Balance. In IEEE Custom Integrated Circuits Conf., pages 379–382, Santa Clara, CA, May 1997.

    Google Scholar 

  32. E. Martens and G. Gielen. A Phase–Frequency Transfer Description of Analog and Mixed–Signal Front–End Architectures for System–Level Design. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 436–441, Paris, Feb. 2004.

    Google Scholar 

  33. E. Martens and G. Gielen. Symbolic Analysis of Front-End Architectures Using Polyphase Harmonic Transfer Matrices. In IEEE Int. Workshop on Symbolic Analysis and Applications in Circuit Design, pages 12–15, Wroclaw, Poland, Sept. 2004.

    Google Scholar 

  34. E. Martens and G. Gielen. A Behavioral Model of Sampled-Data Systems in the Phase-Frequency Transfer Domain for Architectural Exploration of Transceivers. In IEEE Int. Symp. on Circuits and Systems, pages 987–990, Island of Kos, Greece, May 2006.

    Google Scholar 

  35. E. S. J. Martens and G. G. E. Gielen. Phase-Frequency Transfer Model of Analogue and Mixed-Signal Front-End Architectures for System-Level Design. IEE Proceedings Computers and Digital Techniques, 152(1): 45–52, Jan. 2005.

    Article  Google Scholar 

  36. K. W. Martin. Complex Signal Processing is Not Complex. IEEE Trans. on Circuits and Systems—I: Regular Papers, 51(9):1823–1836, Sept. 2004.

    Article  Google Scholar 

  37. MathWorks. Communications Toolbox User’s Guide. 2007. http://www.mathworks.com/access/helpdesk/help/pdf_doc/comm/comm.pdf.

  38. R. C. Melville, P. Feldmann, and J. Roychowdhury. Efficient Multi-tone Distortion Analysis of Analog Integrated Circuits. In IEEE Custom Integrated Circuits Conf., pages 241–244, Santa Clara, CA, May 1995.

    Google Scholar 

  39. D. Middleton. An Introduction to Statistical Communication Theory. Peninsula Publishing, Los Altos, CA, 1987.

    Google Scholar 

  40. H. Nyquist. Certain Topics in Telegraph Transmission Theory. In Trans. of the American Institute of Electrical Engineers, pages 617–644, New York, Feb. 1928.

    Google Scholar 

  41. Peng Li and L. T. Pileggi. Efficient Per-Nonlinearity Distortion Analysis for Analog and RF Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(10):1297–1309, Oct. 2003.

    Google Scholar 

  42. Peng Li and L. T. Pileggi. Efficient Harmonic Balance Simulation Using Multi-Level Frequency Decomposition. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 677–682, San Jose, Nov. 2004.

    Google Scholar 

  43. Pengfei Zhang, L. Der, Dawei Guo, I. Sever, T. Bourdi, C. Lam, A. Zolfaghari, J. Chen, D. Gambetta, Baohong Cheng, S. Gowder, S. Hart, L. Huynh, T. Nguyen, and B. Razavi. A Single-Chip Dual-Band Direct-Conversion IEEE 802.11a/b/g WLAN Transceiver in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40(9):1932–1939, Sept. 2005.

    Article  Google Scholar 

  44. J. G. Proakis. Digital Communications. McGraw-Hill, New York, 2001.

    Google Scholar 

  45. J. Rabaey. A Unified Computer Aided Design Technique for Switched Capacitor Systems in the Time and the Frequency Domain. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, 1983.

    Google Scholar 

  46. B. Razavi. RF IC Design Challenges. In IEEE/ACM Design Automation Conf., pages 408–413, San Francisco, June 1998.

    Google Scholar 

  47. B. Razavi. RF CMOS Transceivers for Cellular Telephony. IEEE Communications Magazine, 41(8):144–149, Aug. 2003.

    Article  Google Scholar 

  48. J. C. Rudell, J.-J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray. A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications. IEEE Journal of Solid-State Circuits, 32(12):2071–2088, Dec. 1997.

    Article  Google Scholar 

  49. S. Samadian, R. Hayashi, and A. A. Abidi. Demodulators for a Zero-IF Bluetooth Receiver. IEEE Journal of Solid-State Circuits, 38(8): 1393–1396, Aug. 2003.

    Article  Google Scholar 

  50. W. Sansen. Distortion in Elementary Transistor Circuits. IEEE Trans. on Circuits and Systems—II: Analog and Digital Signal Processing, 46(3):315–325, Mar. 1999.

    Article  Google Scholar 

  51. W. M. C. Sansen. Analog Design Essentials. Springer, Dordrecht, 2006.

    Google Scholar 

  52. J. E. Savage. Models of Computation. Exploring the Power of Computing. Addison-Wesley, Reading, 1998.

    Google Scholar 

  53. H. Taub and D. L. Schilling. Principles of Communication Systems. McGraw-Hill, New York, 1987.

    Google Scholar 

  54. R. Telichevesky, K. Kundert, I. Elfadel, and J. White. Fast Simulation Algorithms for RF Circuits. In IEEE Custom Integrated Circuits Conf., pages 437–444, San Diego, May 1996.

    Google Scholar 

  55. A. Ushida and L. O. Chua. Frequency-Domain Analysis of Nonlinear Circuits Driven by Multi-Tone Signals. IEEE Trans. on Circuits and Systems, 31(9):766–779, Sept. 1984.

    Article  MathSciNet  Google Scholar 

  56. P. Vanassche, G. Gielen, and W. Sansen. Symbolic Modeling of Periodically Time-Varying Systems Using Harmonic Transfer Matrices. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 21(9):1011–1024, Sept. 2002.

    Article  Google Scholar 

  57. P. Vanassche, G. Gielen, and W. Sansen. Systematic Modeling and Analysis of Telecom Frontends and their Building Blocks. Springer, Dordrecht, 2005.

    Google Scholar 

  58. G. Vandersteen, P. Wambacq, Y. Rolain, P. Dobrovolný, S. Donnay, M. Engels, and I. Bolsens. A methodology for efficient high-level dataflow simulation of mixed-signal front-ends of digital telecom transceivers. In IEEE/ACM Design Automation Conf., pages 440–445, Los Angeles, June 2000.

    Google Scholar 

  59. J. Vandewalle, H. J. De Man, and J. Rabaey. Time, Frequency, and z-Domain Modified Nodal Analysis of Switched-Capacitor Networks. IEEE Trans. on Circuits and Systems, 28(3):186–195, Mar. 1981.

    Article  Google Scholar 

  60. I. Vassiliou and A. Sangiovanni-Vincentelli. A Frequency-Domain, Volterra Series-Based Behavioral Simulation Tool for RF Systems. In IEEE Custom Integrated Circuits Conf., pages 21–24, San Diego, May 1999.

    Google Scholar 

  61. F. Veersé. Efficient iterative time preconditioners for harmonic balance RF circuit simulation. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 251–254, San Jose, Nov. 2003.

    Google Scholar 

  62. V. Volterra. Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York, 1959.

    Google Scholar 

  63. P. Wambacq, P. Dobrovolný, S. Donnay, M. Engels, and I. Bolsens. Compact modeling of nonlinear distortion in analog communication circuits. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 350–354, Paris, Mar. 2000.

    Google Scholar 

  64. P. Wambacq and W. Sansen. Distortion Analysis of Analog Integrated Circuits. Kluwer Academic, Boston, 1998.

    Google Scholar 

  65. P. Wambacq, G. Vandersteen, Y. Rolain, P. Dobrovolný, M. Goffioul, and S. Donnay. Dataflow Simulation of Mixed-Signal Communication Circuits Using a Local Multirate, Multicarrier Signal Representation. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 49(11):1554–1562, Nov. 2002.

    Article  Google Scholar 

  66. Xin Li, Peng Li, Yang Wu, and L. T. Pileggi. Analog and RF Circuit Macromodels for System-Level Analysis. In IEEE/ACM Design Automation Conf., pages 478–483, Anaheim, June 2003.

    Google Scholar 

  67. Xin Li, Yang Xu, Peng Li, P. Gopalakrishnan, and L. T. Pileggi. A Frequency Relaxation Approach for Analog/RF System-Level Simulation. In IEEE/ACM Design Automation Conf., pages 842–847, San Diego, June 2004.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Frequency-Domain Generic Behavioral Models. In: High-Level Modeling and Synthesis of Analog Integrated Systems. Analog Circuits and Signal Processing Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6802-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6802-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6801-0

  • Online ISBN: 978-1-4020-6802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics