Time-Domain Generic Behavioral Models

Part of the Analog Circuits and Signal Processing Series book series (ACSP)

Generic behavioral models describe the behavior of an entire class of analog or mixed-signal system instead of directly representing a particular architecture with specific non-idealities. This allows to widen the design space of architectures covered by the model while the common characteristics of the systems in the class can be exploited to yield time-efficient performance evaluation methods. To offer these properties, systems are described in an indirect way via generic functions and an interaction scheme. These elements are closely related to the evaluation method of the model via simulation: the interaction scheme expresses the dynamic relations between the generic functions. Time- and frequency-domain approaches are commonly used in analog design. Both can be adopted as intrinsic simulation scheme for the generic behavioral model. This chapter focuses on the time-domain techniques that are developed in this work whereas frequency-domain models are discussed in the next chapter.

Keywords

Europe Covariance Expense Dian Candy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Arnout and H. J. De Man. The Use of Threshold Functions and Boolean-Controlled Network Elements for Macromodeling of LSI Circuits. IEEE Journal of Solid-State Circuits, 13(3):326–332, June 1978.CrossRefGoogle Scholar
  2. 2.
    I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and D. Verkest. Hardware/Software Co-Design of Digital Telecommunication Systems. Proceedings of the IEEE, 85(3):391–418, Mar. 1997.CrossRefGoogle Scholar
  3. 3.
    R. Burch, P. Yang, P. Cox, and K. Mayaram. A New Matrix Solution Technique for General Circuit Simulation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(2):225–241, Feb. 1993.CrossRefGoogle Scholar
  4. 4.
    J. C. Candy and G. C. Temes. Oversampling Delta-Sigma Converters: Theory, Design and Simulation. IEEE, 1992.Google Scholar
  5. 5.
    T.-H. Chen, J.-L. Tsai, C. C.-P. Chen, and T. Karnik. HiSIM: Hierarchical Interconnect-Centric Circuit Simulator. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 489–496, San Jose, Nov. 2004.Google Scholar
  6. 6.
    J. A. Cherry and W. M. Snelgrove. Continuous-time Delta-Sigma Data Modulators for High-Speed A/D Conversion. Theory, Practice and Fundamental Performance Limits. Kluwer Academic, 2000.Google Scholar
  7. 7.
    L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and Nonlinear Circuits. McGraw-Hill, New York, 1987.Google Scholar
  8. 8.
    L. O. Chua and P.-M. Lin. Computer-Aided Analysis of Electronic Circuits. Prentice-Hall, Englewood Cliffs, 1975.Google Scholar
  9. 9.
    M. A. Copeland, G. P. Bell, and T. A. Kwasniewski. A Mixed-Mode Sampled-Data Simulation Program. IEEE Journal of Solid-State Circuits, 22(6):1098–1105, Dec. 1987.CrossRefGoogle Scholar
  10. 10.
    H. De Man, J. Rabaey, L. Claesen, and J. Vandewalle. DIANA-SC: A complete CAD-system for switched capacitor filters. In European Solid-State Circuits Conf., pages 130–133, Freiburg, Sept. 1981.Google Scholar
  11. 11.
    H. J. De Man, J. Rabaey, G. Arnout, and J. Vandewalle. Practical Implementation of a General Computer Aided Design Technique for Switched Capacitor Circuits. IEEE Journal of Solid-State Circuits, 15(2):190–200, Apr. 1980.CrossRefGoogle Scholar
  12. 12.
    Dian Zhou and Wei Cai. A Fast Wavelet Collocation Method for High-Speed Circuit Simulation. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 46(8):920–930, Aug. 1999.CrossRefGoogle Scholar
  13. 13.
    D. J. Erdman and D. J. Rose. Newton Waveform Relaxation Techniques for Tightly Coupled Systems. IEEE Trans. on Computer-Aided Design, 11(5):598–606, May 1992.CrossRefGoogle Scholar
  14. 14.
    Fei Yuan and A. Opal. Computer Methods for Switched Circuits. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 50(8):1013–1024, Aug. 2003.CrossRefGoogle Scholar
  15. 15.
    A. Fettweis, D. Herbst, B. Hoefflinger, J. Pandel, and R. Schweer. MOS Switched-Capacitor Filters Using Voltage Inverter Switches. IEEE Trans. on Circuits and Systems, 27(6):527–538, June 1980.CrossRefGoogle Scholar
  16. 16.
    K. Francken and G. G. E. Gielen. A High-Level Simulation and Synthesis Environment for ΔΣ Modulators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(8):1049–1061, Aug. 2003.CrossRefGoogle Scholar
  17. 17.
    K. Francken, M. Vogels, E. Martens, and G. Gielen. A Behavioral Simulation Tool for Continuous–Time ΔΣ Modulators. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 234–239, San Jose, Nov. 2002.Google Scholar
  18. 18.
    Y. Geerts, M. Steyaert, and W. Sansen. Design of Multi-Bit Delta-Sigma A/D Converters. Kluwer Academic, 2002.Google Scholar
  19. 19.
    G. G. E. Gielen, K. Francken, E. Martens, and M. Vogels. An Analytical Integration Method for the Simulation of Continuous-Time ΔΣ Modulators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 23(3):389–399, Mar. 2004.CrossRefGoogle Scholar
  20. 20.
    G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989.Google Scholar
  21. 21.
    D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, 1977.Google Scholar
  22. 22.
    C. D. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat. Modeling and Characterization of the 3rd Order Charge-Pump PLL: a Fully Event-driven Approach. Analog Integrated Circuits and Signal Processing, 19(1):25–45, Apr. 1999.CrossRefGoogle Scholar
  23. 23.
    L. P. Huelsman, editor. Linear Circuit Analysis. In W.-K. Chen, editor, The Circuits and Filters Handbook, Section IV. CRC, Salem, 1995.Google Scholar
  24. 24.
    K. S. Kundert and A. Sangiovanni-Vincentelli. Simulation of Nonlinear Circuits in the Frequency Domain. IEEE Trans. on Computer-Aided Design, 5(4):521–535, Oct. 1986.CrossRefGoogle Scholar
  25. 25.
    K. S. Kundert, J. White, and A. Sangiovanni-Vincentelli. A Mixed Frequency–Time Approach for Distortion Analysis of Switching Filter Circuits. IEEE Journal of Solid-State Circuits, 24(2):443–451, Apr. 1989.CrossRefGoogle Scholar
  26. 26.
    E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Computation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–1229, Dec. 1998.CrossRefGoogle Scholar
  27. 27.
    E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits. IEEE Trans. on Computer-Aided Design, 1(3):131–145, July 1982.CrossRefGoogle Scholar
  28. 28.
    V. Liberali, V. F. Dias, M. Ciapponi, and F. Maloberti. TOSCA: A Simulator for Switched-Capacitor Noise-Shaping A/D Converters. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(9):1376–1386, Sept. 1993.CrossRefGoogle Scholar
  29. 29.
    E. Martens and G. Gielen. A Model of Computation for Continuous–Time ΔΣ Modulators. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 162–167, Munich, Mar. 2003.Google Scholar
  30. 30.
    E. Martens and G. Gielen. Formal modeling of ΔΣ Modulators. In Program for Research on Integrated Systems and Circuits, pages 233–239, Veldhoven, Nov. 2003.Google Scholar
  31. 31.
    E. Martens and G. Gielen. High–Level Modeling of Continuous–Time ΔΣ A/D-Converters. In IEEE Asia South Pacific Design Automation Conference, pages 51–56, Yokohama, Jan. 2004.Google Scholar
  32. 32.
    E. Martens and G. Gielen. Behavioral modeling and simulation of weakly nonlinear sampled-data systems. In IEEE Int. Symp. on Circuits and Systems, volume III, pages 2247–2250, Kobe, May 2005.Google Scholar
  33. 33.
    E. Martens and G. Gielen. Time-Domain Simulation of Sampled Weakly Nonlinear Systems Using Analytical Integration and Orthogonal Polynomial Series. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 120–125, Munich, Mar. 2005.Google Scholar
  34. 34.
    E. S. J. Martens and G. G. E. Gielen. Analyzing Continuous–Time ΔΣ Modulators With Generic Behavioral Models. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 25(5):924–932, May 2006.CrossRefGoogle Scholar
  35. 35.
    J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton, 2003.Google Scholar
  36. 36.
    MathWorks. Signal Processing Toolbox. For Use with MATLAB. 2007. http://www.mathworks.com/access/helpdesk/help/pdf_doc/signal/signal_tb.\%pdf.
  37. 37.
    W. J. McCalla. Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic Publishers, Boston, MA, 1988.Google Scholar
  38. 38.
    D. Middleton. An Introduction to Statistical Communication Theory. Peninsula, Los Altos, 1987.Google Scholar
  39. 39.
    B. Murari. Bridging the Gap Between the Digital and Real Worlds: the Expanding Role of Analog Interface Technologies. In IEEE Int. Solid-State Circuits Conf., pages 30–35, San Francisco, Feb. 2003.Google Scholar
  40. 40.
    L. W. Nagel and D. O. Pederson. SPICE-Simulation Program with Integrated Circuit Emphasis. Technical Report ERL-M382, Univ. California, Berkeley, Electronics Research Laboratory, Apr. 1973.Google Scholar
  41. 41.
    A. R. Newton and A. L. Sangiovanni-Vincentelli. Relaxation-Based Electrical Simulation. IEEE Trans. on Computer-Aided Design, 3(4):308–331, Oct. 1984.CrossRefGoogle Scholar
  42. 42.
    S. R. Norsworthy, R. Schreier, and G. C. Temes. Delta-Sigma Data Converters. Theory, Design and Simulation. IEEE, 1997.Google Scholar
  43. 43.
    O. Oliaei. State-Space Analysis of Clock Jitter in Continuous-Time Oversampling Data Converters. IEEE Trans. on Circuits and Systems—II: Analog and Digital Signal Processing, 50(1):31–37, Jan. 2003.CrossRefGoogle Scholar
  44. 44.
    A. Opal. Sampled Data Simulation of Linear and Nonlinear Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 15(3):295–307, Mar. 1996.CrossRefGoogle Scholar
  45. 45.
    A. Opal and J. Vlach. Consistent Initial Conditions of Linear Switched Networks. IEEE Trans. on Circuits and Systems, 37(3):364–372, Mar. 1990.CrossRefMathSciNetGoogle Scholar
  46. 46.
    J. R. Parkhurst and L. L. Ogborn. Determining the Steady-State Output of Nonlinear Oscillatory Circuits Using Multiple Shooting. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 14(7):882–889, July 1995.CrossRefGoogle Scholar
  47. 47.
    V. Peluso, M. Steyaert, and W. M. C. Sansen. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters. Kluwer Academic, 1999.Google Scholar
  48. 48.
    R. Piessens, E. De Doncker-Kapenga, C. W. Überhuber, and D. K. Kahaner. Quadpack : A Subroutine Package for Automatic Integration. Springer, Berlin, 1983.Google Scholar
  49. 49.
    J. Roychowdhury. Analyzing Circuits with Widely Separated Time Scales Using Numerical PDE Methods. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 48(5):578–594, May 2001.CrossRefMathSciNetGoogle Scholar
  50. 50.
    J. Ruiz-Amaya, J. de la Rosa, F. V. Fernández, F. Medeiro, R. del Río, B. Pérez-Verdú, and A. Rodríguez-Vázquez. High-Level Synthesis of Switched-Capacitor, Switched-Current and Continuous-Time ΣΔ Modulators Using SIMULINK-Based Time-Domain Behavioral Models. IEEE Trans. on Circuits and Systems—I: Regular Papers, 52(9):1795–1810, Sept. 2005.CrossRefGoogle Scholar
  51. 51.
    R. A. Saleh and J. K. White. Accelerating Relaxation Algorithms for Circuit Simulation Using Waveform-Newton and Step-Size Refinement. IEEE Trans. on Computer-Aided Design, 9(9):951–958, Sept. 1990.CrossRefGoogle Scholar
  52. 52.
    J. E. Savage. Models of Computation. Exploring the Power of Computing. Addison-Wesley, Reading, 1998.Google Scholar
  53. 53.
    P. Saviz and O. Wing. Circuit Simulation by Hierarchical Waveform Relaxation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(6):845–860, June 1993.CrossRefGoogle Scholar
  54. 54.
    R. Schreier and B. Zhang. Delta-Sigma Modulators Employing Continuous-Time Circuitry. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 43(4):324–332, Apr. 1996.CrossRefGoogle Scholar
  55. 55.
    K. Singhal and J. Vlach. Computation of time domain response by numerical inversion of the Laplace transform. J. Franklin Inst., 299(2):109–126, Feb. 1975.CrossRefMathSciNetGoogle Scholar
  56. 56.
    K. Suyama, S.-C. Fang, and Y. P. Tsividis. Simulation of Mixed Switched-Capacitor/Digital Networks with Signal-Driven Switches. IEEE Journal of Solid-State Circuits, 25(6):1403–1413, Dec. 1990.CrossRefGoogle Scholar
  57. 57.
    P. Vanassche, G. Gielen, and W. Sansen. Efficient Time-Domain Simulation of Telecom Frontends Using a Complex Damped Exponential Signal Model. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 169–175, Munich, Mar. 2001.Google Scholar
  58. 58.
    P. Vanassche, G. Gielen, and W. Sansen. Efficient Analysis of Slow-Varying Oscillator Dynamics. IEEE Trans. on Circuits and Systems—I: Regular Papers, 51(8):1457–1467, Aug. 2004.CrossRefMathSciNetGoogle Scholar
  59. 59.
    J. Vandewalle, H. J. De Man, and J. Rabaey. Time, Frequency, and z-Domain Modified Nodal Analysis of Switched-Capacitor Networks. IEEE Trans. on Circuits and Systems, 28(3):186–195, Mar. 1981.CrossRefGoogle Scholar
  60. 60.
    J. Vandewalle, J. Rabaey, W. Vercruysse, and H. J. De Man. Computer-Aided Distortion Analysis of Switched Capacitor Filters in the Frequency Domain. IEEE Journal of Solid-State Circuits, 18(3):324–333, June 1983.CrossRefGoogle Scholar
  61. 61.
    A. Vladimirescu. The SPICE book. Wiley, New York, 1994.Google Scholar
  62. 62.
    V. Volterra. Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York, 1959.Google Scholar
  63. 63.
    P. Wambacq and W. Sansen. Distortion Analysis of Analog Integrated Circuits. Kluwer Academic Publishers, Boston, 1998.Google Scholar
  64. 64.
    E. Z. Xia and R. A. Saleh. Parallel Waveform-Newton Algorithms for Circuit Simulation. IEEE Trans. on Computer-Aided Design, 11(4):432–442, Apr. 1992.CrossRefGoogle Scholar
  65. 65.
    B. Yang and J. Phillips. A multi-interval Chebyshev collocation method for efficient high-accuracy RF circuit simulation. In IEEE/ACM Design Automation Conf., pages 178–183, Los Angeles, June 2000.Google Scholar
  66. 66.
    L. Yao, M. Steyaert, and W. Sansen. Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS. Kluwer Academic, 2006.Google Scholar
  67. 67.
    F. Yuan and A. Opal. An Efficient Transient Analysis Algorithm for Mildly Nonlinear Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 21(6):662–673, June 2002.CrossRefGoogle Scholar
  68. 68.
    T. Zhang and D. Feng. An Efficient and Accurate Algorithm for Autonomous Envelope Following with Applications. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 614–617, San Jose, Nov. 2005.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Personalised recommendations