Skip to main content

Part of the book series: Analog Circuits and Signal Processing Series ((ACSP))

  • 944 Accesses

Generic behavioral models describe the behavior of an entire class of analog or mixed-signal system instead of directly representing a particular architecture with specific non-idealities. This allows to widen the design space of architectures covered by the model while the common characteristics of the systems in the class can be exploited to yield time-efficient performance evaluation methods. To offer these properties, systems are described in an indirect way via generic functions and an interaction scheme. These elements are closely related to the evaluation method of the model via simulation: the interaction scheme expresses the dynamic relations between the generic functions. Time- and frequency-domain approaches are commonly used in analog design. Both can be adopted as intrinsic simulation scheme for the generic behavioral model. This chapter focuses on the time-domain techniques that are developed in this work whereas frequency-domain models are discussed in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Arnout and H. J. De Man. The Use of Threshold Functions and Boolean-Controlled Network Elements for Macromodeling of LSI Circuits. IEEE Journal of Solid-State Circuits, 13(3):326–332, June 1978.

    Article  Google Scholar 

  2. I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and D. Verkest. Hardware/Software Co-Design of Digital Telecommunication Systems. Proceedings of the IEEE, 85(3):391–418, Mar. 1997.

    Article  Google Scholar 

  3. R. Burch, P. Yang, P. Cox, and K. Mayaram. A New Matrix Solution Technique for General Circuit Simulation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(2):225–241, Feb. 1993.

    Article  Google Scholar 

  4. J. C. Candy and G. C. Temes. Oversampling Delta-Sigma Converters: Theory, Design and Simulation. IEEE, 1992.

    Google Scholar 

  5. T.-H. Chen, J.-L. Tsai, C. C.-P. Chen, and T. Karnik. HiSIM: Hierarchical Interconnect-Centric Circuit Simulator. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 489–496, San Jose, Nov. 2004.

    Google Scholar 

  6. J. A. Cherry and W. M. Snelgrove. Continuous-time Delta-Sigma Data Modulators for High-Speed A/D Conversion. Theory, Practice and Fundamental Performance Limits. Kluwer Academic, 2000.

    Google Scholar 

  7. L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and Nonlinear Circuits. McGraw-Hill, New York, 1987.

    Google Scholar 

  8. L. O. Chua and P.-M. Lin. Computer-Aided Analysis of Electronic Circuits. Prentice-Hall, Englewood Cliffs, 1975.

    Google Scholar 

  9. M. A. Copeland, G. P. Bell, and T. A. Kwasniewski. A Mixed-Mode Sampled-Data Simulation Program. IEEE Journal of Solid-State Circuits, 22(6):1098–1105, Dec. 1987.

    Article  Google Scholar 

  10. H. De Man, J. Rabaey, L. Claesen, and J. Vandewalle. DIANA-SC: A complete CAD-system for switched capacitor filters. In European Solid-State Circuits Conf., pages 130–133, Freiburg, Sept. 1981.

    Google Scholar 

  11. H. J. De Man, J. Rabaey, G. Arnout, and J. Vandewalle. Practical Implementation of a General Computer Aided Design Technique for Switched Capacitor Circuits. IEEE Journal of Solid-State Circuits, 15(2):190–200, Apr. 1980.

    Article  Google Scholar 

  12. Dian Zhou and Wei Cai. A Fast Wavelet Collocation Method for High-Speed Circuit Simulation. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 46(8):920–930, Aug. 1999.

    Article  Google Scholar 

  13. D. J. Erdman and D. J. Rose. Newton Waveform Relaxation Techniques for Tightly Coupled Systems. IEEE Trans. on Computer-Aided Design, 11(5):598–606, May 1992.

    Article  Google Scholar 

  14. Fei Yuan and A. Opal. Computer Methods for Switched Circuits. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 50(8):1013–1024, Aug. 2003.

    Article  Google Scholar 

  15. A. Fettweis, D. Herbst, B. Hoefflinger, J. Pandel, and R. Schweer. MOS Switched-Capacitor Filters Using Voltage Inverter Switches. IEEE Trans. on Circuits and Systems, 27(6):527–538, June 1980.

    Article  Google Scholar 

  16. K. Francken and G. G. E. Gielen. A High-Level Simulation and Synthesis Environment for ΔΣ Modulators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(8):1049–1061, Aug. 2003.

    Article  Google Scholar 

  17. K. Francken, M. Vogels, E. Martens, and G. Gielen. A Behavioral Simulation Tool for Continuous–Time ΔΣ Modulators. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 234–239, San Jose, Nov. 2002.

    Google Scholar 

  18. Y. Geerts, M. Steyaert, and W. Sansen. Design of Multi-Bit Delta-Sigma A/D Converters. Kluwer Academic, 2002.

    Google Scholar 

  19. G. G. E. Gielen, K. Francken, E. Martens, and M. Vogels. An Analytical Integration Method for the Simulation of Continuous-Time ΔΣ Modulators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 23(3):389–399, Mar. 2004.

    Article  Google Scholar 

  20. G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989.

    Google Scholar 

  21. D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, 1977.

    Google Scholar 

  22. C. D. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat. Modeling and Characterization of the 3rd Order Charge-Pump PLL: a Fully Event-driven Approach. Analog Integrated Circuits and Signal Processing, 19(1):25–45, Apr. 1999.

    Article  Google Scholar 

  23. L. P. Huelsman, editor. Linear Circuit Analysis. In W.-K. Chen, editor, The Circuits and Filters Handbook, Section IV. CRC, Salem, 1995.

    Google Scholar 

  24. K. S. Kundert and A. Sangiovanni-Vincentelli. Simulation of Nonlinear Circuits in the Frequency Domain. IEEE Trans. on Computer-Aided Design, 5(4):521–535, Oct. 1986.

    Article  Google Scholar 

  25. K. S. Kundert, J. White, and A. Sangiovanni-Vincentelli. A Mixed Frequency–Time Approach for Distortion Analysis of Switching Filter Circuits. IEEE Journal of Solid-State Circuits, 24(2):443–451, Apr. 1989.

    Article  Google Scholar 

  26. E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Computation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–1229, Dec. 1998.

    Article  Google Scholar 

  27. E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits. IEEE Trans. on Computer-Aided Design, 1(3):131–145, July 1982.

    Article  Google Scholar 

  28. V. Liberali, V. F. Dias, M. Ciapponi, and F. Maloberti. TOSCA: A Simulator for Switched-Capacitor Noise-Shaping A/D Converters. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(9):1376–1386, Sept. 1993.

    Article  Google Scholar 

  29. E. Martens and G. Gielen. A Model of Computation for Continuous–Time ΔΣ Modulators. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 162–167, Munich, Mar. 2003.

    Google Scholar 

  30. E. Martens and G. Gielen. Formal modeling of ΔΣ Modulators. In Program for Research on Integrated Systems and Circuits, pages 233–239, Veldhoven, Nov. 2003.

    Google Scholar 

  31. E. Martens and G. Gielen. High–Level Modeling of Continuous–Time ΔΣ A/D-Converters. In IEEE Asia South Pacific Design Automation Conference, pages 51–56, Yokohama, Jan. 2004.

    Google Scholar 

  32. E. Martens and G. Gielen. Behavioral modeling and simulation of weakly nonlinear sampled-data systems. In IEEE Int. Symp. on Circuits and Systems, volume III, pages 2247–2250, Kobe, May 2005.

    Google Scholar 

  33. E. Martens and G. Gielen. Time-Domain Simulation of Sampled Weakly Nonlinear Systems Using Analytical Integration and Orthogonal Polynomial Series. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 120–125, Munich, Mar. 2005.

    Google Scholar 

  34. E. S. J. Martens and G. G. E. Gielen. Analyzing Continuous–Time ΔΣ Modulators With Generic Behavioral Models. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 25(5):924–932, May 2006.

    Article  Google Scholar 

  35. J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton, 2003.

    Google Scholar 

  36. MathWorks. Signal Processing Toolbox. For Use with MATLAB. 2007. http://www.mathworks.com/access/helpdesk/help/pdf_doc/signal/signal_tb.\%pdf.

  37. W. J. McCalla. Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic Publishers, Boston, MA, 1988.

    Google Scholar 

  38. D. Middleton. An Introduction to Statistical Communication Theory. Peninsula, Los Altos, 1987.

    Google Scholar 

  39. B. Murari. Bridging the Gap Between the Digital and Real Worlds: the Expanding Role of Analog Interface Technologies. In IEEE Int. Solid-State Circuits Conf., pages 30–35, San Francisco, Feb. 2003.

    Google Scholar 

  40. L. W. Nagel and D. O. Pederson. SPICE-Simulation Program with Integrated Circuit Emphasis. Technical Report ERL-M382, Univ. California, Berkeley, Electronics Research Laboratory, Apr. 1973.

    Google Scholar 

  41. A. R. Newton and A. L. Sangiovanni-Vincentelli. Relaxation-Based Electrical Simulation. IEEE Trans. on Computer-Aided Design, 3(4):308–331, Oct. 1984.

    Article  Google Scholar 

  42. S. R. Norsworthy, R. Schreier, and G. C. Temes. Delta-Sigma Data Converters. Theory, Design and Simulation. IEEE, 1997.

    Google Scholar 

  43. O. Oliaei. State-Space Analysis of Clock Jitter in Continuous-Time Oversampling Data Converters. IEEE Trans. on Circuits and Systems—II: Analog and Digital Signal Processing, 50(1):31–37, Jan. 2003.

    Article  Google Scholar 

  44. A. Opal. Sampled Data Simulation of Linear and Nonlinear Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 15(3):295–307, Mar. 1996.

    Article  Google Scholar 

  45. A. Opal and J. Vlach. Consistent Initial Conditions of Linear Switched Networks. IEEE Trans. on Circuits and Systems, 37(3):364–372, Mar. 1990.

    Article  MathSciNet  Google Scholar 

  46. J. R. Parkhurst and L. L. Ogborn. Determining the Steady-State Output of Nonlinear Oscillatory Circuits Using Multiple Shooting. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 14(7):882–889, July 1995.

    Article  Google Scholar 

  47. V. Peluso, M. Steyaert, and W. M. C. Sansen. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters. Kluwer Academic, 1999.

    Google Scholar 

  48. R. Piessens, E. De Doncker-Kapenga, C. W. Ãœberhuber, and D. K. Kahaner. Quadpack : A Subroutine Package for Automatic Integration. Springer, Berlin, 1983.

    Google Scholar 

  49. J. Roychowdhury. Analyzing Circuits with Widely Separated Time Scales Using Numerical PDE Methods. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 48(5):578–594, May 2001.

    Article  MathSciNet  Google Scholar 

  50. J. Ruiz-Amaya, J. de la Rosa, F. V. Fernández, F. Medeiro, R. del Río, B. Pérez-Verdú, and A. Rodríguez-Vázquez. High-Level Synthesis of Switched-Capacitor, Switched-Current and Continuous-Time ΣΔ Modulators Using SIMULINK-Based Time-Domain Behavioral Models. IEEE Trans. on Circuits and Systems—I: Regular Papers, 52(9):1795–1810, Sept. 2005.

    Article  Google Scholar 

  51. R. A. Saleh and J. K. White. Accelerating Relaxation Algorithms for Circuit Simulation Using Waveform-Newton and Step-Size Refinement. IEEE Trans. on Computer-Aided Design, 9(9):951–958, Sept. 1990.

    Article  Google Scholar 

  52. J. E. Savage. Models of Computation. Exploring the Power of Computing. Addison-Wesley, Reading, 1998.

    Google Scholar 

  53. P. Saviz and O. Wing. Circuit Simulation by Hierarchical Waveform Relaxation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 12(6):845–860, June 1993.

    Article  Google Scholar 

  54. R. Schreier and B. Zhang. Delta-Sigma Modulators Employing Continuous-Time Circuitry. IEEE Trans. on Circuits and Systems—I: Fundamental Theory and Applications, 43(4):324–332, Apr. 1996.

    Article  Google Scholar 

  55. K. Singhal and J. Vlach. Computation of time domain response by numerical inversion of the Laplace transform. J. Franklin Inst., 299(2):109–126, Feb. 1975.

    Article  MathSciNet  Google Scholar 

  56. K. Suyama, S.-C. Fang, and Y. P. Tsividis. Simulation of Mixed Switched-Capacitor/Digital Networks with Signal-Driven Switches. IEEE Journal of Solid-State Circuits, 25(6):1403–1413, Dec. 1990.

    Article  Google Scholar 

  57. P. Vanassche, G. Gielen, and W. Sansen. Efficient Time-Domain Simulation of Telecom Frontends Using a Complex Damped Exponential Signal Model. In IEEE/ACM Design, Automation and Test in Europe Conf. and Exhibition, pages 169–175, Munich, Mar. 2001.

    Google Scholar 

  58. P. Vanassche, G. Gielen, and W. Sansen. Efficient Analysis of Slow-Varying Oscillator Dynamics. IEEE Trans. on Circuits and Systems—I: Regular Papers, 51(8):1457–1467, Aug. 2004.

    Article  MathSciNet  Google Scholar 

  59. J. Vandewalle, H. J. De Man, and J. Rabaey. Time, Frequency, and z-Domain Modified Nodal Analysis of Switched-Capacitor Networks. IEEE Trans. on Circuits and Systems, 28(3):186–195, Mar. 1981.

    Article  Google Scholar 

  60. J. Vandewalle, J. Rabaey, W. Vercruysse, and H. J. De Man. Computer-Aided Distortion Analysis of Switched Capacitor Filters in the Frequency Domain. IEEE Journal of Solid-State Circuits, 18(3):324–333, June 1983.

    Article  Google Scholar 

  61. A. Vladimirescu. The SPICE book. Wiley, New York, 1994.

    Google Scholar 

  62. V. Volterra. Theory of Functionals and of Integral and Integro-Differential Equations. Dover, New York, 1959.

    Google Scholar 

  63. P. Wambacq and W. Sansen. Distortion Analysis of Analog Integrated Circuits. Kluwer Academic Publishers, Boston, 1998.

    Google Scholar 

  64. E. Z. Xia and R. A. Saleh. Parallel Waveform-Newton Algorithms for Circuit Simulation. IEEE Trans. on Computer-Aided Design, 11(4):432–442, Apr. 1992.

    Article  Google Scholar 

  65. B. Yang and J. Phillips. A multi-interval Chebyshev collocation method for efficient high-accuracy RF circuit simulation. In IEEE/ACM Design Automation Conf., pages 178–183, Los Angeles, June 2000.

    Google Scholar 

  66. L. Yao, M. Steyaert, and W. Sansen. Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS. Kluwer Academic, 2006.

    Google Scholar 

  67. F. Yuan and A. Opal. An Efficient Transient Analysis Algorithm for Mildly Nonlinear Circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 21(6):662–673, June 2002.

    Article  Google Scholar 

  68. T. Zhang and D. Feng. An Efficient and Accurate Algorithm for Autonomous Envelope Following with Applications. In IEEE/ACM Int. Conf. on Computer-Aided Design, pages 614–617, San Jose, Nov. 2005.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Time-Domain Generic Behavioral Models. In: High-Level Modeling and Synthesis of Analog Integrated Systems. Analog Circuits and Signal Processing Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6802-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6802-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6801-0

  • Online ISBN: 978-1-4020-6802-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics