Homogeneous and Heterogeneous Catalysis Using Base Metals From Groups 10 And 11

  • Bruce H. Lipshutz
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 246)

Recent developments on the use of nickel-in-charcoal (Ni/C) as a catalyst for several cross-couplings assisted by microwave irradiation are presented. The new reagent for synthesis, nickel-on-graphite (Ni/Cg) is presented as a means of catalyzing the reductions of aryl tosylates and mesylates. Another reagent under development, copper-in-charcoal (Cu/C) is described and its potential to effect heterogeneous asymmetric hydrosilylations in the presence of an inexpensive silane is disclosed.


asymmetric reductions organocopper and organonickel chemistry heterogeneous catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Desai and C. O. Kappe, Microwave-Assisted Applications Using Supported Catalysts, in Topics in Current Chemistry, ed. A. Kirschning (Springer, Berlin, 2004), pp. 177–207.Google Scholar
  2. 2.
    B. H. Lipshutz, S. Tasler, W. Chrisman, B. Spliethoff, and B. Tesche, On the Nature of the ‘Heterogeneous’ Catalyst: Nickel-on-Charcoal, J. Org. Chem. 68, 1177–1189 (2003).CrossRefGoogle Scholar
  3. 3.
    E.-I. Negishi, In Metal-Catalyzed Cross-Coupling Reactions, F. Diederich, P. J. Stang (eds.) Wiley-VCH, Weinheim (1998), Chapter 1.Google Scholar
  4. 4.
    Microwave Assisted Organic Synthesis J. P. Tierney and P. Lidstrom (eds.) (Blackwell, Oxford, 2005).Google Scholar
  5. 5.
    B. H. Lipshutz and B. Frieman, Microwave accelerated, Ni/C-catalyzed cross-couplings of in situ-derived zirconocenes, Tetrahedron 60, 1309–1316 (2004).CrossRefGoogle Scholar
  6. 6.
    E-I. Negishi and D. E. Van Horn, Selective carbon–carbon bond formation via transition metal catalysis. 4. A novel approach to cross-coupling exemplified by the nickel-catalyzed reaction of alkenylzirconium derivatives with aryl halides, J. Am. Chem. Soc. 99, 3168–3170 (1977).CrossRefGoogle Scholar
  7. 7.
    B. H. Lipshutz and P. A. Blomgren, Nickel on Charcoal (Ni/C): An Expedient and Inexpensive Heterogeneous Catalyst for Cross-Couplings between Aryl Chlorides and Organometallics. I. Functionalized Organozinc Reagents, J. Am. Chem. Soc. 121, 5819–5820 (1999).CrossRefGoogle Scholar
  8. 8.
    B. H. Lipshutz and H. Ueda, Aromatic aminations by heterogeneous Ni/C catalysis, Angew. Chem. Int. Ed. Engl. 39, 4492–4494 (2000).CrossRefGoogle Scholar
  9. 9.
    B. H. Lipshutz, T. Tomioka, P. A. Blomgren, and J. A. Sclafani, Kumada couplings catalyzed by nickel on charcoal (Ni/C), Inorg. Chim. Acta. 296, 164–169 (1999).CrossRefGoogle Scholar
  10. 10.
    P. Knochel and R. D. Singer, Preparation and Reactions of Polyfunctional Organozinc Reagents in Organic Synthesis, Chem. Rev. 93, 2117–2188 (1993).CrossRefGoogle Scholar
  11. 11.
    B. H. Lipshutz and S. Tasler, Preparation of Nickel-on-Charcoal (Ni/C): An Improved Protocol, Adv. Synth. Catal. 343, 327–329 (2001).CrossRefGoogle Scholar
  12. 12.
    B. H. Lipshutz, B. A. Frieman, T. Butler and V. Kogan, Heterogeneous Catalysis with Nickel-on-Graphite (Ni/Cg): Reduction of Aryl Tosylates and Mesylates, Angew. Chem. Int. Ed. 45, 800–803 (2006).CrossRefGoogle Scholar
  13. 13.
    W. Cabri, S. De Bernardinis, F. Francalanci, S. Penco, and R. Santi, Palladium-catalyzed reduction of aryl sulfonates. Reduction versus hydrolysis selectivity control, J. Org. Chem. 55, 350–353 (1990).CrossRefGoogle Scholar
  14. 14.
    D. A. Evans, C. J. Dinsmore, P. S. Watson, M. R. Wood, T. I. Richardson, B. W. Trotter, and J. L. Katz, Nonconventional Stereochemical Issues in the Design of the Synthesis of the Vancomycin Antibiotics: Challenges Imposed by Axial and Nonplanar Chiral Elements in the Heptapeptide Aglycons, Angew. Chem., Int. Ed. 37, 2704–2708 (1998).CrossRefGoogle Scholar
  15. 15.
    B. H. Lipshutz, D. J. Buzard, R. W. Vivian, Reductions of Aryl Perfluorosulfonates with Dimethylamine•Borane (Me2NH•BH3) Catalyzed by Pd(0): An Operationally Simple, Inexpensive, and General Protocol, Tetrahedron Lett. 40, 6871–6874 (1999).CrossRefGoogle Scholar
  16. 16.
    For example, H. Nishiyama and K. Itoh, Asymmetric Hydrosilylation and Related Reactions. In Catalytic Asymmetric Synthesis, ed. I. Ojima (Wiley-VCH, New York, 2000), Chapter 2.Google Scholar
  17. 17.
    (a) I. Ojima, M. Nihonyanagi, and Y. Nagai, Rhodium complex-catalyzed hydrosilylation of carbonyl compounds. J. Chem. Soc., Chem. Commun. 938–938 (1972). (b) I. Ojima, T. Kogure, M. Nihonyanagi, and Y. Nagai, Reduction of carbonyl compounds with various hydrosilane-rhodium(I) complex combinations. Bull Soc. Chem. Jpn. 45, 3506 (1972). (c) K. Yamamoto, Y. Uramoto, and M. Kumada, Asymmetric hydrosilylation with a chiral phosphine-nicle(II) complex. J. Organomet. Chem. 31, C9–C10 (1971).Google Scholar
  18. 18.
    W. Dumont, J. C. Poulin, T.-P. Dang, and H. B. Kagan, Asymmetric catalytic reduction with transition metal complexes. II. Asymmetric catalysis by a supported chiral Rhodium complex. J. Am. Chem. Soc. 95, 8295–8299 (1973).CrossRefGoogle Scholar
  19. 19.
    H. Brunner, and W. Miehling, Asymmetrische katalysen: XXII. Enantio-selektive hydrosilylierung von ketonen mit CuI-katalysatoren, J. Organomet. Chem. 275, C17–C21 (1984).CrossRefGoogle Scholar
  20. 20.
    B. H. Lipshutz, Cu(I)-mediated 1, 2- and 1, 4-Reductions, In Modern Organocopper Chemistry, ed. N. Krause (Wiley-VCH, Weinheim, 2002), pp. 167–187.CrossRefGoogle Scholar
  21. 21.
    For example, see B. Tao, G. C. Fu, Application of a new family of P, N ligands to the highly enantioselective hydrosilylation of aryl, alkyl, and dialkyl ketones. Angew. Chem. Int. Ed. 41, 3892–3894 (2002).Google Scholar
  22. 22.
    T. Saito, T. Yokozawa, T. Ishizaki, T. Moroi, N. Sayo, T. Miura, and H. Kumobayashi, New Chiral Diphosphine Ligands Designed to Have a Narrow Dihedral Angle in the Biaryl Backbone, Adv. Synth. Catal. 343, 264–267 (2001).CrossRefGoogle Scholar
  23. 23.
    R. Schmid, E. A. Broger, M. Cereghetti, Y. Crameri, J. Foricher, M. Lalonde, R. K. Muller, M. Scalone, G. Schoettel, and U. Zutter, New Developments in Enantioselective Hydrogenation, Pure. Appl. Chem., 68, 131–138 (1996).CrossRefGoogle Scholar
  24. 24.
    B. H. Lipshutz, K. Noson, W. Chrisman, and A. Lower, Asymmetric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands, J. Am. Chem. Soc., 125, 8779–8789 (2003).CrossRefGoogle Scholar
  25. 25.
    H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer, and A. Togni, Solvias Josiphos Ligands: From Discovery to Technical Applications, Top. Catal. 19, 3–16 (2002).CrossRefGoogle Scholar
  26. 26.
    N. J. Lawrence, M. D. Drew, and S. M. Bushell, Polymethylhydrosiloxane: A versatile reducing agent for organic synthesis. J. Chem. Soc. Perkin Trans. 1, 3381–3391 (1999).CrossRefGoogle Scholar
  27. 27.
    B. H. Lipshutz and H. Shimizu, Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angew. Chem. Int. Ed. 43, 2228–2230 (2004).CrossRefGoogle Scholar
  28. 28.
    B. H. Lipshutz, J. M. Servesko, T. B. Petersen, P. P. Papa, and A. Lover, Asymmetric 1, 4-Reductions of Hindered d-Substituted Cycloalkenones Using Catalytic SEGHOS-Ligated CuH. Org. Lett. 6, 1273–1275 (2004).CrossRefGoogle Scholar
  29. 29.
    B. H. Lipshutz, J. M. Servesko, B. R. Taft, Asymmetric 1, 4-Hydro-silylations of 2,-Unsaturated Esters, J. Am. Chem. Soc. 126, 8352–8353 (2004).CrossRefGoogle Scholar
  30. 30.
    B. H. Lipshutz, A. Lower, R. J. Kucejko (unpublished).Google Scholar
  31. 31.
    (a) D. M. Brestensky, J. M. Stryker, Regioselective Conjugate Reduction and Reductive Silylation of 3,-Unsaturated Aldehydes Using [(Ph3P) CuH]6. Tetrahedron Lett. 30, 5677–5680 (1989). (b) W. S. Mahoney, J. M. Stryker, Hydride-mediated Homogeneous Catalysis. Catalytic Reductions of m,-Unsaturated Ketones Using [(Ph3P) CuH]6 and H2. J. Am. Chem. Soc. 111, 8818–8823 (1989).Google Scholar
  32. 32.
    D. Lee, J. Yun, Copper-Catalyzed Asymmetric Hydrosilylation of Ketones Using Air and Moisture Stable Precatalyst Cu(OAc)2H2O. Tetrahedron Lett. 45, 5415–5417 (2004).CrossRefGoogle Scholar
  33. 33.
    M. 3. P., ,. A., ,.. B., A, X II: X X A X P P N -Azaheterocyclic Acid Derivatives. Proc. Natl. Acad. Sci. USA 101, 5821–5823 (2004).Google Scholar
  34. 34.
    B. H. Lipshutz, B. A. Frieman, Copper Hydride in a Bottle: A Convenient Reagent for Asymmetric Hydrosilylations, Angew. Chem. Int. Ed. 44, 6345–6348 (2005).CrossRefGoogle Scholar
  35. 35.
    A. R. Silva, J. L. Figueiredo, C. Freire, B. de Castro, Copper(II) Acetylacetonate Anchored onto an Activated Carbon as a Heterogeneous Catalyst for the Aziridination of Styrene. Catal. Today 102–103, 154–159 (2005); T. Tsoncheva, S. Vankova, O. Bozhkov, D. Mehandjiev, J. Effect of Rhenium on Copper Supported on Activated Carbon Catalysts for Methanol Decomposition. Mol. Cat. A 225, 245–251 (2005).CrossRefGoogle Scholar
  36. 36.
    M. S. Kharasch P. O. Tawney, Factors Determining the Course and Mechanisms of Grignard Reactions. II. The Effect of Metallic Compounds on the Reaction Between Isopherone and Methylmagnesium Bromide. J. Am. Chem. Soc. 63, 2308–2316 (1941).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Bruce H. Lipshutz
    • 1
  1. 1.Department of Chemistry & BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations