Skip to main content

Homogeneous and Heterogeneous Catalysis Using Base Metals From Groups 10 And 11

  • Conference paper
New Methodologies and Techniques for a Sustainable Organic Chemistry

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 246))

Recent developments on the use of nickel-in-charcoal (Ni/C) as a catalyst for several cross-couplings assisted by microwave irradiation are presented. The new reagent for synthesis, nickel-on-graphite (Ni/Cg) is presented as a means of catalyzing the reductions of aryl tosylates and mesylates. Another reagent under development, copper-in-charcoal (Cu/C) is described and its potential to effect heterogeneous asymmetric hydrosilylations in the presence of an inexpensive silane is disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Desai and C. O. Kappe, Microwave-Assisted Applications Using Supported Catalysts, in Topics in Current Chemistry, ed. A. Kirschning (Springer, Berlin, 2004), pp. 177–207.

    Google Scholar 

  2. B. H. Lipshutz, S. Tasler, W. Chrisman, B. Spliethoff, and B. Tesche, On the Nature of the ‘Heterogeneous’ Catalyst: Nickel-on-Charcoal, J. Org. Chem. 68, 1177–1189 (2003).

    Article  CAS  Google Scholar 

  3. E.-I. Negishi, In Metal-Catalyzed Cross-Coupling Reactions, F. Diederich, P. J. Stang (eds.) Wiley-VCH, Weinheim (1998), Chapter 1.

    Google Scholar 

  4. Microwave Assisted Organic Synthesis J. P. Tierney and P. Lidstrom (eds.) (Blackwell, Oxford, 2005).

    Google Scholar 

  5. B. H. Lipshutz and B. Frieman, Microwave accelerated, Ni/C-catalyzed cross-couplings of in situ-derived zirconocenes, Tetrahedron 60, 1309–1316 (2004).

    Article  CAS  Google Scholar 

  6. E-I. Negishi and D. E. Van Horn, Selective carbon–carbon bond formation via transition metal catalysis. 4. A novel approach to cross-coupling exemplified by the nickel-catalyzed reaction of alkenylzirconium derivatives with aryl halides, J. Am. Chem. Soc. 99, 3168–3170 (1977).

    Article  CAS  Google Scholar 

  7. B. H. Lipshutz and P. A. Blomgren, Nickel on Charcoal (Ni/C): An Expedient and Inexpensive Heterogeneous Catalyst for Cross-Couplings between Aryl Chlorides and Organometallics. I. Functionalized Organozinc Reagents, J. Am. Chem. Soc. 121, 5819–5820 (1999).

    Article  CAS  Google Scholar 

  8. B. H. Lipshutz and H. Ueda, Aromatic aminations by heterogeneous Ni/C catalysis, Angew. Chem. Int. Ed. Engl. 39, 4492–4494 (2000).

    Article  CAS  Google Scholar 

  9. B. H. Lipshutz, T. Tomioka, P. A. Blomgren, and J. A. Sclafani, Kumada couplings catalyzed by nickel on charcoal (Ni/C), Inorg. Chim. Acta. 296, 164–169 (1999).

    Article  CAS  Google Scholar 

  10. P. Knochel and R. D. Singer, Preparation and Reactions of Polyfunctional Organozinc Reagents in Organic Synthesis, Chem. Rev. 93, 2117–2188 (1993).

    Article  CAS  Google Scholar 

  11. B. H. Lipshutz and S. Tasler, Preparation of Nickel-on-Charcoal (Ni/C): An Improved Protocol, Adv. Synth. Catal. 343, 327–329 (2001).

    Article  CAS  Google Scholar 

  12. B. H. Lipshutz, B. A. Frieman, T. Butler and V. Kogan, Heterogeneous Catalysis with Nickel-on-Graphite (Ni/Cg): Reduction of Aryl Tosylates and Mesylates, Angew. Chem. Int. Ed. 45, 800–803 (2006).

    Article  CAS  Google Scholar 

  13. W. Cabri, S. De Bernardinis, F. Francalanci, S. Penco, and R. Santi, Palladium-catalyzed reduction of aryl sulfonates. Reduction versus hydrolysis selectivity control, J. Org. Chem. 55, 350–353 (1990).

    Article  CAS  Google Scholar 

  14. D. A. Evans, C. J. Dinsmore, P. S. Watson, M. R. Wood, T. I. Richardson, B. W. Trotter, and J. L. Katz, Nonconventional Stereochemical Issues in the Design of the Synthesis of the Vancomycin Antibiotics: Challenges Imposed by Axial and Nonplanar Chiral Elements in the Heptapeptide Aglycons, Angew. Chem., Int. Ed. 37, 2704–2708 (1998).

    Article  CAS  Google Scholar 

  15. B. H. Lipshutz, D. J. Buzard, R. W. Vivian, Reductions of Aryl Perfluorosulfonates with Dimethylamine•Borane (Me2NH•BH3) Catalyzed by Pd(0): An Operationally Simple, Inexpensive, and General Protocol, Tetrahedron Lett. 40, 6871–6874 (1999).

    Article  CAS  Google Scholar 

  16. For example, H. Nishiyama and K. Itoh, Asymmetric Hydrosilylation and Related Reactions. In Catalytic Asymmetric Synthesis, ed. I. Ojima (Wiley-VCH, New York, 2000), Chapter 2.

    Google Scholar 

  17. (a) I. Ojima, M. Nihonyanagi, and Y. Nagai, Rhodium complex-catalyzed hydrosilylation of carbonyl compounds. J. Chem. Soc., Chem. Commun. 938–938 (1972). (b) I. Ojima, T. Kogure, M. Nihonyanagi, and Y. Nagai, Reduction of carbonyl compounds with various hydrosilane-rhodium(I) complex combinations. Bull Soc. Chem. Jpn. 45, 3506 (1972). (c) K. Yamamoto, Y. Uramoto, and M. Kumada, Asymmetric hydrosilylation with a chiral phosphine-nicle(II) complex. J. Organomet. Chem. 31, C9–C10 (1971).

    Google Scholar 

  18. W. Dumont, J. C. Poulin, T.-P. Dang, and H. B. Kagan, Asymmetric catalytic reduction with transition metal complexes. II. Asymmetric catalysis by a supported chiral Rhodium complex. J. Am. Chem. Soc. 95, 8295–8299 (1973).

    Article  CAS  Google Scholar 

  19. H. Brunner, and W. Miehling, Asymmetrische katalysen: XXII. Enantio-selektive hydrosilylierung von ketonen mit CuI-katalysatoren, J. Organomet. Chem. 275, C17–C21 (1984).

    Article  CAS  Google Scholar 

  20. B. H. Lipshutz, Cu(I)-mediated 1, 2- and 1, 4-Reductions, In Modern Organocopper Chemistry, ed. N. Krause (Wiley-VCH, Weinheim, 2002), pp. 167–187.

    Chapter  Google Scholar 

  21. For example, see B. Tao, G. C. Fu, Application of a new family of P, N ligands to the highly enantioselective hydrosilylation of aryl, alkyl, and dialkyl ketones. Angew. Chem. Int. Ed. 41, 3892–3894 (2002).

    Google Scholar 

  22. T. Saito, T. Yokozawa, T. Ishizaki, T. Moroi, N. Sayo, T. Miura, and H. Kumobayashi, New Chiral Diphosphine Ligands Designed to Have a Narrow Dihedral Angle in the Biaryl Backbone, Adv. Synth. Catal. 343, 264–267 (2001).

    Article  CAS  Google Scholar 

  23. R. Schmid, E. A. Broger, M. Cereghetti, Y. Crameri, J. Foricher, M. Lalonde, R. K. Muller, M. Scalone, G. Schoettel, and U. Zutter, New Developments in Enantioselective Hydrogenation, Pure. Appl. Chem., 68, 131–138 (1996).

    Article  CAS  Google Scholar 

  24. B. H. Lipshutz, K. Noson, W. Chrisman, and A. Lower, Asymmetric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands, J. Am. Chem. Soc., 125, 8779–8789 (2003).

    Article  CAS  Google Scholar 

  25. H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer, and A. Togni, Solvias Josiphos Ligands: From Discovery to Technical Applications, Top. Catal. 19, 3–16 (2002).

    Article  CAS  Google Scholar 

  26. N. J. Lawrence, M. D. Drew, and S. M. Bushell, Polymethylhydrosiloxane: A versatile reducing agent for organic synthesis. J. Chem. Soc. Perkin Trans. 1, 3381–3391 (1999).

    Article  Google Scholar 

  27. B. H. Lipshutz and H. Shimizu, Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angew. Chem. Int. Ed. 43, 2228–2230 (2004).

    Article  CAS  Google Scholar 

  28. B. H. Lipshutz, J. M. Servesko, T. B. Petersen, P. P. Papa, and A. Lover, Asymmetric 1, 4-Reductions of Hindered d-Substituted Cycloalkenones Using Catalytic SEGHOS-Ligated CuH. Org. Lett. 6, 1273–1275 (2004).

    Article  CAS  Google Scholar 

  29. B. H. Lipshutz, J. M. Servesko, B. R. Taft, Asymmetric 1, 4-Hydro-silylations of 2,-Unsaturated Esters, J. Am. Chem. Soc. 126, 8352–8353 (2004).

    Article  CAS  Google Scholar 

  30. B. H. Lipshutz, A. Lower, R. J. Kucejko (unpublished).

    Google Scholar 

  31. (a) D. M. Brestensky, J. M. Stryker, Regioselective Conjugate Reduction and Reductive Silylation of 3,-Unsaturated Aldehydes Using [(Ph3P) CuH]6. Tetrahedron Lett. 30, 5677–5680 (1989). (b) W. S. Mahoney, J. M. Stryker, Hydride-mediated Homogeneous Catalysis. Catalytic Reductions of m,-Unsaturated Ketones Using [(Ph3P) CuH]6 and H2. J. Am. Chem. Soc. 111, 8818–8823 (1989).

    Google Scholar 

  32. D. Lee, J. Yun, Copper-Catalyzed Asymmetric Hydrosilylation of Ketones Using Air and Moisture Stable Precatalyst Cu(OAc)2H2O. Tetrahedron Lett. 45, 5415–5417 (2004).

    Article  CAS  Google Scholar 

  33. M. 3. P., ,. A., ,.. B., A, X II: X X A X P P N -Azaheterocyclic Acid Derivatives. Proc. Natl. Acad. Sci. USA 101, 5821–5823 (2004).

    Google Scholar 

  34. B. H. Lipshutz, B. A. Frieman, Copper Hydride in a Bottle: A Convenient Reagent for Asymmetric Hydrosilylations, Angew. Chem. Int. Ed. 44, 6345–6348 (2005).

    Article  CAS  Google Scholar 

  35. A. R. Silva, J. L. Figueiredo, C. Freire, B. de Castro, Copper(II) Acetylacetonate Anchored onto an Activated Carbon as a Heterogeneous Catalyst for the Aziridination of Styrene. Catal. Today 102–103, 154–159 (2005); T. Tsoncheva, S. Vankova, O. Bozhkov, D. Mehandjiev, J. Effect of Rhenium on Copper Supported on Activated Carbon Catalysts for Methanol Decomposition. Mol. Cat. A 225, 245–251 (2005).

    Article  Google Scholar 

  36. M. S. Kharasch P. O. Tawney, Factors Determining the Course and Mechanisms of Grignard Reactions. II. The Effect of Metallic Compounds on the Reaction Between Isopherone and Methylmagnesium Bromide. J. Am. Chem. Soc. 63, 2308–2316 (1941).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Lipshutz, B.H. (2008). Homogeneous and Heterogeneous Catalysis Using Base Metals From Groups 10 And 11. In: Mordini, A., Faigl, F. (eds) New Methodologies and Techniques for a Sustainable Organic Chemistry. NATO Science Series II: Mathematics, Physics and Chemistry, vol 246. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6793-8_8

Download citation

Publish with us

Policies and ethics