Skip to main content

Cancer Genetics in the Clinic

  • Chapter
Book cover Principles of Cancer Genetics
  • 1656 Accesses

The cancer gene theory has provided an intellectual framework for understanding how cancers arise and how they grow. That mutated genes provide selective advantages at various stages of tumor growth explains how tumorigenesis is related to both our environment and our inborn genetic makeup. These insights rank among the great accomplishments of modern science. Most importantly, the cancer gene theory guides the most promising efforts to prevent, diagnose, treat and cure cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Domchek, S. M. & Weber, B. L. Clinical management of BRCA1 and BRCA2 mutation carriers. Oncogene 25, 5825–5831 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Druker, B. J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Greulich, H. et al. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med. 2, e313 (2005).

    Article  PubMed  Google Scholar 

  • Guttmacher, A. E. & Collins, F. S. Realizing the promise of genomics in biomedical research. JAMA 294, 1399–1402 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Herbst, R. S., Fukuoka, M. & Baselga, J. Gefitinib–a novel targeted approach to treating cancer. Nat. Rev. Cancer 4, 956–965 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y. C., Sidransky, D. & Ahrendt, S. A. Molecular detection approaches for smoking associated tumors. Oncogene 21, 7289–7297 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kelley, S. K. & Ashkenazi, A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333–339 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. S. & Van Etten, R. A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lacroix, M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer 13, 1033–1067 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Mao, L. et al. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. U. S. A. 91, 9871–9875 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Mills, N. E. et al. Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J. Natl. Cancer Inst. 87, 1056–1060 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Morgensztern, D. & Govindan, R. Is there a role for cetuximab in non small cell lung cancer? Clin. Cancer Res. 13, 4602s–4605s (2007).

    Article  CAS  Google Scholar 

  • Nahta, R. & Esteva, F. J. Trastuzumab: Triumphs and tribulations. Oncogene 26, 3637–3643 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. S. A needle in a haystack of genes. N. Engl. J. Med. 346, 302–304 (2002).

    Article  PubMed  Google Scholar 

  • Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Trepanier, A. et al. Genetic cancer risk assessment and counseling: Recommendations of the national society of genetic counselors. J. Genet. Couns. 13, 83–114 (2004).

    Article  PubMed  Google Scholar 

  • Wang, S. & El-Deiry, W. S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628–8633 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wexler, N. S. The Tiresias complex: Huntington’s disease as a paradigm of testing for late-onset disorders. FASEB J. 6, 2820–2825 (1992).

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Cancer Genetics in the Clinic. In: Principles of Cancer Genetics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6784-6_7

Download citation

Publish with us

Policies and ethics