Adenosine in Retinal Vasculogenesis and Angiogenesis in Oxygen-Induced Retinopathy

  • Gerard A. Lutty
  • D. Scott McLeod

Abstract

Adenosine is a ubiquitous molecule produced predominantly by catabolism of adenosine triphosphate. Levels of this nucleoside increase dramatically with ischemia and elevated tissue activity. Adenosine induces angiogenesis in tumors and wound healing and upregulates VEGF production in several cell types, including endothelial cells. The source of adenosine in most tissues appears to be the ectoenzyme 5’ nucleotidase, which is hypoxia inducible. 5’ nucleotidase expression is prominent during retinal vascular development in the innermost processes of Muller cells, and levels of its product, adenosine, are high in inner retina during retinal vascular development in postnatal dog. One of the adenosine receptors, A2A, is present on angioblasts and on endothelial cells of formed blood vessels during canine retinal vascular development. These observations suggest that adenosine is important in retinal vascular development.

Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity (ROP). OIR is induced by exposure of the developing retina to high oxygen. Vascular development is halted, and over 60% of the retinal vasculature is lost during this stage, which is called vaso-obliteration. Expression of 5’ nucleotidase is dramatically reduced during vaso-obliteration, resulting in a sharp decline in adenosine. When animals are returned to room air, the retina is hypoxic because of the lack of blood vessels and increased oxygen consumption due to neuronal development. At this time, the vasoproliferative stage of OIR begins, and 5’ nucleotidase activity and adenosine levels become elevated well beyond normal. A2A-positive endothelial cell proliferation is also elevated compared to control animals. Florid preretinal neovascularization occurs and is characterized by high levels of adenosine and A2A receptors. Therefore, adenosine and its A2A receptor appear to be important in canine OIR. This has also been demonstrated in the mouse model of OIR. Systemically administered antagonists of the adenosine A2B receptor significantly reduced retinal neovascularization in mice,1 as did cleavage of A2B by a ribozyme.2 These studies suggest that adenosine and its receptors are important in retinal vascular development and may be a therapeutic target in OIR.

Keywords

Migration Ischemia Adenosine Retina Succinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Mino, P. E. Spoerri, S. Caballero, D. Player, L. Belardinelli, I. Biaggioni, and M. B. Grant, Adenosine receptor antagonists and retinal neovascularization in vivo, Invest. Ophthalmol. Vis. Sci. 42 (13), 3320-3324 (2001).PubMedGoogle Scholar
  2. 2.
    A. Afzal, L. Shaw, S. Caballero, P. Spoerri, A. Lewin, D. Zeng, L. Belardinelli, and M. B. Grant, Reduction in preretinal neovascularization by ribozymes that cleave the A2b adenosine receptor mRNA, Circ. Res. 93, 500-506 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Linden, Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection, Annu. Rev. Pharmacol. Toxicol. 41, 775-787 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    S. A. Rivkees, Z. Zhao, G. Porter, and C. Turner, Influences of adenosine on the fetus and newborn, Mol. Genet. Metab. 74 (1-2), 160-171 (2001).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Schopf, H. Rumpold, and M. M. Muller, Alterations of purine salvage pathways during differentiation of rat heart myoblasts toward myocytes, Biochimica et Biophysica Acta 884, 319-325 (1986).PubMedGoogle Scholar
  6. 6.
    N. Braun, C. Lenz, F. Gillardon, M. Zimmerman, and H. Zimmerman, Focal cerebral ischemia enhances glial expression of ecto-5’-nucleotidase, Brain Res. 766, 213-226 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Kitakaze, M. Hori, and T. Kamada, Role of adenosine and its interaction with alpha adrenoceptor activity in ischaemic and reperfusion injury of the myocardium, Cardiovascular Res. 27, 18-27 (1993).Google Scholar
  8. 8.
    K. Synnestvedt, G. T. Furuta, K. M. Comerford, N. Louis, J. Karhausen, H. K. Eltzschig, K. R. Hansen, L. F. Thompson, and S. P. Colgan, Ecto-5’-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia, J. Clin. Invest. 110 (7), 993-1002 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Freissmuth, W. Schutz, and M. E. Linder, Interactions of the bovine brain A1-adenosine receptor with recombinant G protein a-subunits. Selectivity for rGioa - 3, J. Biol. Chem. 266, 17778-17783 (1991).PubMedGoogle Scholar
  10. 10.
    C. Blazynski, Adenosine A1 receptor-mediated inhibition of adenylate cyclase in rabbit retina, J. Neuroscience 7, 2522-2528 (1987).Google Scholar
  11. 11.
    W. Abebe and S. J. Mustafa, A1 adenosine receptor mediated Ins(1,4,5)P3 generation in allergic rabbit airway smooth muscle, Am. J. Physiol. 275, L990-L997 (1998).Google Scholar
  12. 12.
    B. T. Liang, Direct preconditioning of cardiac ventricular myocytes via adensoine A1 and KATP channel, Am. J.Physiol. 271, H1769-H1777 (1996).PubMedGoogle Scholar
  13. 13.
    R. B. Marala and S. J. Mustafa, Immunological characterization of adenosine A2a receptors in human and porcine cardiovascular tissue, J. Pharmacol. Exp. Ther. 286, 1051-1057 (1998).PubMedGoogle Scholar
  14. 14.
    V. Stefanovic, P. Vlahovic, V. Savic, and R. Ardaillou, Adenosine stimulates 5’-nucleotidase activity in rat mesangial cells via A2 receptor, FEBS Lett. 331, 96-100 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    S. N. Li and P. T. Wong, The adenosine receptor agonist, APNEA, increases Ca+ + influx into rat cortical synaptosomes through N-type channels associated with A2a receptors, Neurochem. Res. 25, 457-459 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    T. M. Palmer, T. W. Gettys, and G. L. Stiles, Differentail interaction with and regulation of multiple G-proteins by the rat A3 adenossne receptor, J. Biol. Chem. 270, 16895-16902 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    M. P. Abbracchio, R. Brambilla, S. Ceruti, H. O. Kim, D. K. von Lubitz, and K. A. Jacobsen, G protein-dependent activation of phospholipase C by adensoine A3 receptors in rat brain, Mol. Pharmacol. 48, 1038-1045 (1995).PubMedGoogle Scholar
  18. 18.
    Z. Zhao, C. E. Francis, and K. Ravid, An A3-subtype receptor is highly expressed in rat smooth muscle cells: its role in attenuating adensoine-induced increase in camp, Microvasc. Res. 54, 243-252 (1997).PubMedCrossRefGoogle Scholar
  19. 19.
    Z. Zhao, K. Makaritsis, C. E. Francis, H. Gavris, and K. Ravid, A role for the A3 adensoine receptor in determining tissue levels of cAMP and blood pressure: studies in knockout mice, Biochem. Biophys. Acta 1500, 280-290 (2000).PubMedGoogle Scholar
  20. 20.
    R. Berne, R. Knabb, S. W. Ely, and R. Rubio, Adenosine in the local regulation of blood flow: a brief overview, Federation Proc. 42, 3136-3142 (1983).Google Scholar
  21. 21.
    J. W. Phillis, Adenosine in the control of cerebral circulation, Cerebrovascular and Brain Metabolism Reviews 1, 26-54 (1989).PubMedGoogle Scholar
  22. 22.
    H. Winn, S. Morii, and R. Berne, The role of adenosine in autoregulation of cerebral blood flow, Annals Biomed. Engineering 13, 321-328 (1985).CrossRefGoogle Scholar
  23. 23.
    R. Tabrizchi and S. Bedi, Pharmacology of adenosine receptors in the vasculature, Pharmacol. Ther. 91 (2), 133-147 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    H. A. Olanrewaju and S. J. Mustafa, Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells, Gen. Pharmacol. 35 (3), 171-177 (2000).PubMedGoogle Scholar
  25. 25.
    J. W. Dusseau and P. M. Hutchins, Hypoxia-induced angiogenesis in chick chorioallantoic membranes: a role for adenosine, Respir. Physiol. 71, 33-44 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    C. J. Meininger, M. E. Schelling, and H. J. Granger, Adenosine and hypoxia stimulate proliferation and migration of endothelial cells, Am. J. Physiol. 255, H554-H562 (1988).PubMedGoogle Scholar
  27. 27.
    E. Teuscher and V. Weidlich, Adenosine nucleotides, adenosine and adenine as angiogenesis factors, Biomed. Biochim. Acta. 44, 493-495 (1985).PubMedGoogle Scholar
  28. 28.
    G. A. Lutty, M. K. Mathews, C. Merges, and D. S. McLeod, Adenosine stimulates canine retinal microvascular endothelial cell migration and tube formation, Curr. Eye Res. 17 (6), 594-607 (1998).PubMedGoogle Scholar
  29. 29.
    H. A. Olanrewaju, W. Qin, I. Feoktistov, J. L. Scemama, and S. J. Mustafa, Adenosine A(2A) and A(2B) receptors in cultured human and porcine coronary artery endothelial cells, Am. J. Physiol. Heart Circ. Physiol. 279 (2), H650-H656 (2000).PubMedGoogle Scholar
  30. 30.
    I. Feoktistov, A. E. Goldstein, S. Ryzhov, D. Zeng, L. Belardinelli, T. Voyno-Yasenetskaya, and I. Biaggioni, Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation, Circ. Res. 90 (5), 531-538 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    R. K. Dubey, D. G. Gillespie, and E. K. Jackson, A(2B) adenosine receptors stimulate growth of porcine and rat arterial endothelial cells, Hypertension 39 (2 Pt 2), 530-535 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    M. B. Grant, M. I. Davis, S. Caballero, I. Feoktistov, I. Biaggioni, and L. Belardinelli, Proliferation, migration, and ERK activation in human retinal endothelial cells through A(2B) adenosine receptor stimulation, Invest. Ophthalmol. Vis. Sci. 42 (9), 2068-2073 (2001).PubMedGoogle Scholar
  33. 33.
    A. Desai, C. Victor-Vega, S. Gadangi, M. C. Montesinos, C. C. Chu, and B. N. Cronstein, Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1, Mol. Pharmacol. 67 (5), 1406-1413 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    G. W. Kreutzberg and S. T. Hussain, Cytochemical heterogeneity of the glial plasma membrane: 5’-nucleotidase in retinal Müller cells, J. Neurocytol. 11, 53-64 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    N. Braun, P. Brendel, and H. Zimmerman, Distribution of 5’-nucleotidase in the developing mouse retina, Brain Res. 88, 79-86 (1995).CrossRefGoogle Scholar
  36. 36.
    G. A. Lutty, C. Merges, and D. S. McLeod, 5’ nucleotidase and adenosine during retinal vasculogenesis and oxygen- induced retinopathy, Invest. Ophthalmol. Vis. Sci. 41 (1), 218-229 (2000).PubMedGoogle Scholar
  37. 37.
    C. Blazynski and M. T. Perez, Neuroregulatory functions of adenosine in the retina, Prog. Retinal Res. 11, 293-332 (1992).CrossRefGoogle Scholar
  38. 38.
    K. M. Braas, M. A. Zarbin, and S. H. Snyder, Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina, Proc. Natl. Acad. Sci., USA 84, 3906-3910 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Blazynski, J. L. Mosinger, and A. I. Cohen, Comparison of adenosine uptake and endogenous adenosine-containing cells in mammalian retina, Vis. Neurosci. 2, 109-116 (1989).PubMedGoogle Scholar
  40. 40.
    P. Ostwald, S. S. Park, A. Y. Toledando, and S. Roth, Adenosine receptor blockade and nitric oxide synthase inhibition in the retina: Impact upon post-ischemic hyperemia and the electroretinogram, Vis. Res. 37, 3453-3461 (1997).PubMedCrossRefGoogle Scholar
  41. 41.
    J. M. Gidday and T. S. Park, Adenosine-mediated autoregulation of retinal arteriolar tone in the piglet, Invest. Ophthalmol. Vis. Sci. 34, 2713-2719 (1993).PubMedGoogle Scholar
  42. 42.
    J. M. Gidday and T. S. Park, Microcirculatory responses to adenosine in the newborn pig, Pediatr. Res. 33, 620-627 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Roth, S. S. Park, C. W. Sikorski, J. Osinski, R. Chan, and K. Loomis, Concentrations of adenosine and its metabolites in the rat retina/choroid during reperfusion after ischemia, Curr. Eye Res. 16, 875-885 (1997).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Roth, P. S. Rosenbaum, J. Osinski, S. S. Park, A. Y. Toledano, B. Li, and A. A. Moshfeghi, Ischemia induces significant changes in purine nucleoside concentration in the retina-choroid in rats, Exp. Eye Res. 65, 771-779 (1997).PubMedCrossRefGoogle Scholar
  45. 45.
    A. K. Larsen and N. N. Osbourne, Involvement of adenosine in retinal ischemia. Studies on rat, Invest. Ophthalmol. Vis. Sci. 37, 2603-2611 (1996).PubMedGoogle Scholar
  46. 46.
    B. Li, P. S. Rosenbaum, N. M. Jennings, K. A. Maxwell, and S. Roth, Differential roles of adenosine receptor subtypes in retinal ischemia-reperfusion injury in the rat, Exp. Eye Res. 68, 9-17 (1999).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Li and S. Roth, Retinal preconditioning in the rat: requirement for adenosine and repetitive induction, Invest. Ophthalmol. Vis. Sci. 40, 1200-1216 (1999).PubMedGoogle Scholar
  48. 48.
    G. J. Ghiardi, J. M. Gidday, and S. Roth, The purine nucleoside adenosine in retinal ischemia-reperfusion injury, Vision Res. 39, 2519-2535 (1999).PubMedCrossRefGoogle Scholar
  49. 49.
    S. Fischer, H. S. Sharma, G. F. Kaliczek, and W. Schaper, Expression of vascular permeability factor/vascular endothelial growth factor in pig cerebral microvascular endothelial cells and its upregulation by adenosine, Mol. Brain Res. 28, 141-148 (1995).PubMedCrossRefGoogle Scholar
  50. 50.
    H. Takagi, G. L. King, G. S. Robinson, N. Ferrara, and L. P. Aiello, Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells, Invest. Ophthalmol. Vis. Sci. 37, 2165-2176 (1996).PubMedGoogle Scholar
  51. 51.
    H. Takagi, G. L. King, N. Ferrara, and L. P. Aiello, Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells, Invest. Ophthalmol. Vis. Sci. 37, 1311-1321 (1996).PubMedGoogle Scholar
  52. 52.
    M. B. Grant, R. W. Tarnuzzer, S. Cabalerro, M. J. Ozeck, M. I. Davis, P. E. Spoerri, I. Feoktistov, I. Biaggioni, J. C. Shryock, and L. Belardinelli, Adenosine receptor activation induces vascular endothelial growth factor in human endothelial cells, Circ. Res. 85, 699-706 (1999).PubMedGoogle Scholar
  53. 53.
    R. W. Flower, D. S. McLeod, G. A. Lutty, B. Goldberg, and S. D. Wajer, Postnatal retinal vascular development of the puppy, Invest. Ophthal. Vis. Sci. 26, 957-968 (1985).PubMedGoogle Scholar
  54. 54.
    D. S. McLeod, R. Brownstein, and G. A. Lutty, Vaso-obliteration in the canine model of oxygen-induced retinopathy, Invest. Ophthalmol. Vis. Sci. 37, 300-311 (1996).PubMedGoogle Scholar
  55. 55.
    D. S. McLeod and G. A. Lutty, Menadione-dependent alpha glycerophosphate and succinate dehydrogenases in the developing canine retina, Curr. Eye Res. 14, 819-826 (1995).PubMedCrossRefGoogle Scholar
  56. 56.
    D. S. McLeod, G. A. Lutty, S. D. Wajer, and R. W. Flower, Visualization of a developing vasculature, Microvasc. Res. 33, 257-269 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    T. Chan-Ling, D. S. McLeod, S. Hughes, L. Baxter, Y. Chu, T. Hasegawa, and G. A. Lutty, Astrocyte-endothelial cell relationships during human retinal vascular development, Invest. Ophthalmol. Vis. Sci. 45, 2020-2032 (2004).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Taomoto, D. S. McLeod, C. Merges, and G. A. Lutty, Localization of adenosine A2a receptor in retinal development and oxygen-induced retinopathy, Invest. Ophthalmol. Vis. Sci. 41 (1), 230-243 (2000).PubMedGoogle Scholar
  59. 59.
    A. Van Waarde, M. E. Stromski, G. Thulin, K. M. Guadio, M. Kashgarian, R. G. Shulman, and N. J. Siegel, Protection of the kidney against ischemic injury by inhibition of 5’-nucleotidase, Am. J. Physiol. 256, F298-F305 (1989).PubMedGoogle Scholar
  60. 60.
    G. A. Gole, Animal models of retinopathy of prematurity, in: Retinopathy of prematurity, edited by W. A. Silverman and J. T. Flynn (Blackwell Scientific Publications, Boston, 1985) pp. 53-95.Google Scholar
  61. 61.
    X. Reynaud and C. K. Dorey, Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat, Invest. Ophthalmol. Vis. Sci. 35, 3169-3177 (1994).PubMedGoogle Scholar
  62. 62.
    J. S. Penn, B. L. Tolman, and M. M. Henry, Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization, Invest. Ophthalmol. Vis. Sci. 35, 3429-3435 (1994).PubMedGoogle Scholar
  63. 63.
    D. S. McLeod, S. A. D’Anna, and G. A. Lutty, Clinical and histopathologic features of canine oxygen-induced proliferative retinopathy, Invest. Ophthalmol. Vis. Sci. 39 (10), 1918-1932 (1998).PubMedGoogle Scholar
  64. 64.
    L. E. H. Smith, E. Wesolowski, A. McLellan, S. K. Kostyk, R. D. D’Amato, R. Sullivan R, and P. A. D’Amore, Oxygen-induced retinopathy in the mouse, Invest. Ophthalmol. Vis. Sci. 35 (1), 101-111 (1994).PubMedGoogle Scholar
  65. 65.
    T. Chan-Ling, S. Tout, H. Holländer, and J. Stone, Vascular changes and their mechanisms in the feline model of retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci. 33 (7), 2128-2147 (1992).PubMedGoogle Scholar
  66. 66.
    N. Ashton, B. Ward, and G. Serpell, Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasias, Br. J. Ophthalmol. 38, 397-428 (1954).PubMedCrossRefGoogle Scholar
  67. 67.
    T. Chan-Ling, B. Gock, and J. Stone, The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis, Invest. Ophthalmol. Vis. Sci. 36, 1201-1214 (1995).PubMedGoogle Scholar
  68. 68.
    A. Patz, Oxygen studies in retrolental fibroplasia:IV clinical and experimental observations, Am. J. Ophthalmol. 38, 291-307 (1954).PubMedGoogle Scholar
  69. 69.
    M. Kitakaze, M. Hori, S. Takashima, K. Iwai, H. Sato, M. Inoue, A. Kitabatake, and T. Kamada, Superoxide dismutase enhances ischemia- induced reactive hyperemic flow and adenosine release in dogs, Circ. Res. 71, 558-566 (1992).PubMedGoogle Scholar
  70. 70.
    M. Kitakaze, M. Hori, T. Morioka, S. Takashima, T. Minamino, H. Sato, M. Inoue, and T. Kamada, Attenuation of ecto-5’-nucleotidase activity and adenosine release in activated human polymorphonuclear leukocytes, Circ. Res. 73, 524-533 (1993).PubMedGoogle Scholar
  71. 71.
    Y. F. Chen, P. L. Li, and A. P. Zou, Oxidative stress enhances the production and actions of adenosine in the kidney, Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281, R1808-R1816 (2001).Google Scholar
  72. 72.
    D. S. McLeod, S. N. Crone, and G. A. Lutty, Vasoproliferation in the neonatal dog model of oxygen-induced retinopathy, Invest. Ophthalmol. Vis. Sci. 37 (7), 1322-1333 (1996).PubMedGoogle Scholar
  73. 73.
    S. E. Brooks, X. Gu, S. Samuel, D. M. Marcus, M. Bartoli, P. L. Huang, and R. B. Caldwell, Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice, Invest. Ophthalmol. Vis. Sci. 42, 222-228 (2001).PubMedGoogle Scholar
  74. 74.
    C. D. Lewis, S. M. Hourani, C. J. Long, and M. G. Collis, Characterization of adenosine receptors in the rat isolated aorta, Gen. Pharmac. 25, 1381-1387 (1994).Google Scholar
  75. 75.
    S. M. Poucher, J. R. Keddie, R. Brooks, G. R. Shaw, and D. McKillup, Pharmacodynamics of ZM 241385, a potent A2a adenosine antagonist, after enteric administration in rat, cat and dog, J. Pharm. Pharmacol. 48, 601-606 (1996).PubMedGoogle Scholar
  76. 76.
    L. Sobrevia, D. L. Yudilevich, and G. E. Mann, Activation of A2-purinoceptors by adenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in fetal human endothelial cells, J. Physiol. 499, 135-140 (1997).PubMedGoogle Scholar
  77. 77.
    S. J. Mustafa and W. Abebe, Coronary vasodilation by adenosine-receptor subtypes and mechanism of action, Drug Development Res. 39, 308-313 (1996).CrossRefGoogle Scholar
  78. 78.
    D. S. McLeod, M. Taomoto, J. Cao, Z. Zhu, L. Witte, and G. A. Lutty, Localization of VEGF receptor-2 (KDR/FLK-1) and effects of blocking it in oxygen-induced retinopathy, Invest. Ophthalmol. Vis. Sci. 43, 474-482 (2002).PubMedGoogle Scholar
  79. 79.
    R. R. Morrison, M. A. Talukder, C. Ledent, and S. J. Mustafa, Cardiac effects of adenosine in A(2A) receptor knockout hearts: uncovering A(2B) receptors, Am. J. Physiol. Heart Circ. Physiol. 282 (2), H437-H444 (2002).PubMedGoogle Scholar
  80. 80.
    J. L. Moreau and G. Huber, Central adenosine A(2A) receptors: an overview, Brain Res. Brain Res. Rev. 31, 65-82 (1999).PubMedCrossRefGoogle Scholar
  81. 81.
    A. Afzal, L. C. Shaw, S. Caballero, E. A. Ellis, and M. B. Grant, The development of hammerhead ribozymes that specifically cleave the A2B receptor mRNA, Invest. Ophthalmol. Vis. Sci. 43, ARVO abstract #3711 (2002).Google Scholar
  82. 82.
    J. A. Forsythe, B. Jiang, N. V. Iyer, F. Agani, S. W. Leung, R. D. Koos, and G. L. Semenza, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1, Mol. Cell. Biol. 16, 4604-4613 (1996).PubMedGoogle Scholar
  83. 83.
    P. H. Maxwell and P. J. Ratcliffe, Oxygen sensors and angiogenesis, Seminars in Cell & Developmental Biology 13 (1), 29-37 (2002).CrossRefGoogle Scholar
  84. 84.
    C. Michiels, E. Minet, G. Michel, D. Mottet, J. Piret, and M. Raes, HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases, IUBMB Life 52, 49-53 (2001).PubMedCrossRefGoogle Scholar
  85. 85.
    G. A. Lutty and D. S. McLeod, Retinal vascular development and oxygen-induced retinopathy: a role for adenosine, Prog. Ret. Eye Res. 22, 95-111 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gerard A. Lutty
    • 1
  • D. Scott McLeod
    • 1
  1. 1.Wilmer Ophthalmological Institute,Johns Hopkins HospitalBaltimore

Personalised recommendations