The Impact of Urbanization on Soils

  • Peter J. Marcotullio
  • Ademola K. Braimoh
  • Takashi Onishi

Cities are important driving forces in environmental trends as a consequence of the increase in the share of the global population that reside in urban areas and the large intensity of activities of urban dwellers. As the world continues to urbanize, however, humans have lost contact with soil and the services it provides to sustain life. A review of the literature shows that the ability of urban activities to influence the physical conditions and pollution levels in soils at a distance is increasing. Cities and urban processes have had dramatic but varying impacts on soil physical and biochemical properties and pollutant loads, all of which affect the life-supporting services of soils. As developing countries continue to industrialize, soil pollutant contamination in their cities continue to increase to levels warranting immediate action. We argue for a global assessment of urban soils to identify the patterns, processes, and unique circumstances of anthropogenic impacts. There is also the need for soil protection and remediation in areas already undergoing change as a result of urban development.


Urbanization cities urban ecosystems scales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, J. (2006). City parks: Space for the soul. National Geographic, 210, 110–115.Google Scholar
  2. Agardy, T., Alder J., et al. (2005a). Coastal systems. In Ecosystems and human well-being, Vol. 1: Current state and trends (ed. M. E. Assessment). Washington, DC: Island Press.Google Scholar
  3. Agardy, T., Alder J., et al. (2005b). Coastal systems. In R. Hassan, R. Scholes & N. Ash (Eds.), Ecosystems and human well being: Current state and trends, Vol. 1. Washington, DC: Island Press.Google Scholar
  4. Berry, B. J. L. (1990). Urbanization. In B. L. Turner II, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews & W. B. Meyer (Eds.), The earth as transformed by human action: Global and regional changes in the biosphere over the past 300 Years (pp. 103–119). Cambridge: Cambridge University Press.Google Scholar
  5. Berry, D. (1978). Effects of urbanization on agricultural activities. Growth and Change, 9, 2–8.CrossRefGoogle Scholar
  6. Blitzer, S., Hardoy, J., & Satterthwaite, D. (1981). Shelter: People’s needs and governments’ response. Ekistics, 48, 4–13.Google Scholar
  7. Blume, H.-P. (1989). Classification of soils in urban agglomerations. Catena, 16, 269–275.CrossRefGoogle Scholar
  8. Bogue, D. J. (1956). Metropolitan growth and conversion of land to non-agricultural uses. Oxford University Press published jointly by Scripps, Oxford, Ohio.Google Scholar
  9. Bogue, D.J. (1956). Metropolitan growth and the conversion of land to non-agricultural uses. Studies in population distribution, no. 11, Scripps Foundation, Oxford, OH.Google Scholar
  10. Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  11. Braimoh, A. K. (2004). Modeling land-use change in the Volta Basin of Ghana. Ecology and Development Series No. 14. Bonn, Germany: University of Bonn, Center for Development Research.Google Scholar
  12. Braimoh, A. K., Stein A., & Vlek, P. L. G. (2005). Identification and mapping of associations among soil variables. Soil Science, 170, 137–148.CrossRefGoogle Scholar
  13. Braimoh, A. K., & Vlek, P. L. G. (2006). Soil quality and other factors influencing maize yield in Northern Ghana. Soil Use and Management, 22, 165–171.CrossRefGoogle Scholar
  14. Brown, H. S., Kasperson, R. E., & Raymond, S. (1990). Trace pollutants. In I. B. L. Turner, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews & W. B. Meyer (Eds.), The Earth as transformed by human action, global and regional changes in the biosphere over the past 300 Years (pp. 437–454). New York: Cambridge University Press.Google Scholar
  15. Bullock, P., & Gregory, P. J. (Eds.) (1991). Soils in the urban environment. Oxford: Blackwell.Google Scholar
  16. Burguera, J. L., Burguera, M., & Rondon, C. (1988). Lead in roadside soils of Merida City Venezuela. The Science of the Total Environment, 77, 45–49.CrossRefGoogle Scholar
  17. Carey, A. E., Gowen, J. A., Forehand, T. J., Tai, H., & Wiersma, G. B. (1980). Heavy metal concentrations in soils of five United States cities, 1972 Urban Soils Monitoring Program. Pesticides Monitoring Journal, 13, 150–154.Google Scholar
  18. Chameides, W. L., Kasibhatla, P. S., Yienger, J., & Levy, H. (1994). Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science, 264, 74–77.CrossRefGoogle Scholar
  19. Chameides, W. L., Li, X., Tang, X., Zhou, X., Luo, C., Kiang, C. S., St. John, J., Saylor, R. D., Liu, S. C., Lam, K. S., Wang, T., & Giorgi, F. (1999). Is ozone pollution affecting crop yields in China? Geophysical Research Letters, 26, 867–870.CrossRefGoogle Scholar
  20. Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96, 61–68.CrossRefGoogle Scholar
  21. Chhabra, R. (1985). India: Environmental degradation, urban slums, political tension (pp. 1–6). Draper Fund Report 14.Google Scholar
  22. Craul P. J., & Klein C. J. (1980). Characterization of streetside soils of Syracuse, New York. Metropolitan Tree Improvement Alliance (METRIA) Proceedings, 3, 88–101.Google Scholar
  23. Craul, P. J. (1985). A description of urban soils and their desired characteristics. Journal of Arboriculture, 11, 330–339.Google Scholar
  24. Craul, P. J. (1992). Urban soil in landscape design. New York: Wiley.Google Scholar
  25. Davies, B. E. (1984). Distance-decline patterns in heavy metal contamination of soils and plants in Birmingham, England. Urban Ecology, 8, 285–294.CrossRefGoogle Scholar
  26. Davis Kingsley (1965). “The urbanization of the human population” Scientific American.Google Scholar
  27. De Kimpe, C., & Morel, J.-L. (2000). Urban soil management: A growing concern. Soil Science, 165, 31–40.CrossRefGoogle Scholar
  28. Decker, E. H., Elliott, S., Smith, F. A., Blake, D. R., & Rowland, F. S. (2000). Energy and material flow through the urban ecosystem. Annual Review of Energy and Environment, 25, 685–740.CrossRefGoogle Scholar
  29. Douglas, I. (1974). The impact of urbanization on river systems. Proceedings of the International Geographical Union Regional Conference and Eight New Zealand Geography Conference, 307–317.Google Scholar
  30. Douglas, I. (1978). The impact of urbanization on fluvial geomorphology in the humid tropics. Geo-Eco-Trop, 2, 229–242.Google Scholar
  31. Douglas, I. (1981). The city as an ecosystem. Progress in Physical Geography, 5, 315–367.CrossRefGoogle Scholar
  32. Douglas, I. (1983). The urban environment. London: Edward Arnold.Google Scholar
  33. Douglas, I. (1994). Human settlements. In W. B. Meyer & B. L. Turner (Eds.), Changes in land use and land cover: A global perspective (pp. 149–169). Cambridge: Cambridge University Press.Google Scholar
  34. Driessen, P., Deckers, J., & Spaargaren, O. (2001). Lecture notes on soils of the world soil resources reports, 94. Rome: FAO.Google Scholar
  35. Ehrlich, A. (1991). Food and people. Population and Environment: A Journal of Interdisciplinary Studies, 12, 221–229.Google Scholar
  36. European Environment Agency (2006) Urban sprawl in Europe, The ignored challenge (pp. 60). Copenhagen: EEA.Google Scholar
  37. FAO. (1985). Urbanization: A growing challenge to agriculture and food systems in development countries. In FAO (Ed.), State of food and agriculture 1984 (pp. 79–124). Rome: FAO.Google Scholar
  38. FAO. (2006). Global forest resources assessment 2005, Progress towards sustainable forest management. Rome: FAO.Google Scholar
  39. Fischel, W. A. (1982). The urbanization of agricultural land: A review of the National Agricultural Lands study. Land Economics, 58, 236–258.CrossRefGoogle Scholar
  40. Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 27, 167–172.Google Scholar
  41. Francek, M. A. (1992). Soil lead levels in a small town environment: A case study from Mt. Pleasant, Michigan. Environmental Pollution, 76, 251–257.CrossRefGoogle Scholar
  42. Frey, H. T. (1984). Expansion of urban areas in the United States 1960–1980. Washington, DC: USDA Economic Research Service.Google Scholar
  43. Garcia-Miragaya, J., Castro, S., & Paolini, J. (1981). Lead and zinc levels and chemical fractionation in roadside soils of Caracas, Venezuela. Water, Air and Soil Pollution, 15, 285–297.CrossRefGoogle Scholar
  44. Gardner, G. (1996). Asia is losing ground. World Watch, 9, 18–27.Google Scholar
  45. Gbadegesin, A., & Olabode, M. A. (2000). Soil properties in the metropolitan region of Ibadan, Nigeria: Implications for the management of the urban environment of developing countries. The Environmentalist, 20, 205–214.CrossRefGoogle Scholar
  46. Gilbert, O. L. (1989). The ecology of urban habitats. London: Chapman & Hall.Google Scholar
  47. Gill, D., & Bonnett, P. (1973). Nature in the urban landscape: A study of city ecosystems. Baltimore, MD: York Press.Google Scholar
  48. Goffman, P. M., & Crawford, M. K. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32, 1144–1149.Google Scholar
  49. Green, D. M., & Oleksyszyn, M. (2002). Enzyme activities and carbon dioxide flux in Sonoran desert urban ecosystem. Soil Science Society of America Journal, 66, 2002–2008.Google Scholar
  50. Grubler, A. (1994). Technology. In W. B. Meyer & I. B. L. Turner (Eds.), Changes in land use and land cover: A global perspective (pp. 287–328). Cambridge: Cambridge University Press.Google Scholar
  51. Hardoy, J. E., Mitlin, D., & Satterthwaite, D. (2001). Environmental problems in an urbanization world. London: Earthscan.Google Scholar
  52. Hart, J. F. (1976). Urban encroachment on rural areas. Geographical Review, 66, 1–17.CrossRefGoogle Scholar
  53. Hassan, R., Scholes, R., & Ash, N (eds.), (2005) Ecosystems and human well-being: Current state and trends, Vol. 1. Washington, DC: Island Press.Google Scholar
  54. Hillel, D. (1980). Fundamentals of soil physics. New York: Wiley.Google Scholar
  55. Hiller, D. A. (2000). Properties of Urbic Anthrosols from an abandoned shunting yard in the Ruhr area, Germany. Catena, 39, 245–266.CrossRefGoogle Scholar
  56. Hooke, R. L. (2000). On the history of humans as geomorphic agents. Geology, 28, 843–846.CrossRefGoogle Scholar
  57. Hough, M. (2004). Cities and natural process: A basis for sustainability. (2nd ed.) London: Routledge, Taylor & Francis.Google Scholar
  58. Huang, J., Lu, X. X., & Sellers, J. M.(2006).Urban form in the developed and developing worlds: An analysis using spatial metrics and remote sensing. Environment and Urban Planning.Google Scholar
  59. Huang, J., Lu, X. X., & Sellers, J. M. (2007). A global comparative analysis of urban form: applying spatial metrics and remote sensing. Landscape and Urban Planning, 82(4), 184–197.CrossRefGoogle Scholar
  60. Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  61. Jacoby, H. J. (2000). Access to markets and the benefits of rural roads. The Economic Journal, 110(465), 713–737.CrossRefGoogle Scholar
  62. Jim, C. Y. (1989). Tree-canopy characteristics and urban development in Hong Kong. Geographical Review, 79, 210–225.CrossRefGoogle Scholar
  63. Jim, C. Y. (1998a). Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystems, 2, 171–181.CrossRefGoogle Scholar
  64. Jim, C. Y. (1998b). Soil characteristics and management in an urban park in Hong Kong. Environmental Management, 22, 683–695.CrossRefGoogle Scholar
  65. Jim, C. Y. (2003). Soil recovery from human disturbance in tropical woodlands in Hong Kong. Catena, 85–103.Google Scholar
  66. Kaya, S., & Curran, P. J. (2006). Monitoring urban growth on the European side of Istanbul metropolitan area: A case study. International Journal of Applied Earth Observation and Geoinformation, 8, 18–25.CrossRefGoogle Scholar
  67. Kelly, P. F. (1998). The politics of urban-rural relations: Land use conversion in the Philippines. Environment and Urbanization, 10, 35–54.Google Scholar
  68. Kostel-Huges, F., Young, T. P., & Carreiro, M. M. (1998). Forest leaf litter quantity and seedling occurrence along an urban-rural gradient. Urban Ecosystems, 2, 263–278.CrossRefGoogle Scholar
  69. Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai, Western India. Environmental Geology, 47, 1054–1061.CrossRefGoogle Scholar
  70. Landsberg, H. (1981). The urban climate. International Geophysics Series 28, New York.Google Scholar
  71. Larson, W. E., Pierce, F. J., & Dowdy, R. H. (1983). The threat of soil erosion to long-term crop production. Science, 219, 458–465.CrossRefGoogle Scholar
  72. Lemay, M., & Mulamootil, G. (1984) A study of changing land uses in and around Toronto waterfront marshes. Urban Ecology, 8, 313–328.CrossRefGoogle Scholar
  73. Li, X., Lee, S.-l., Wong, S.-c., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124.CrossRefGoogle Scholar
  74. Linde, M., Bengtsson, H., & Oborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water, Air and Soil Pollution: Focus, 1, 83–101.CrossRefGoogle Scholar
  75. Lo, F.-c., & Marcotullio, P. J. (2000). Globalization and urban transformations in the Asia Pacific region: A review. Urban Studies, 37, 77–111.CrossRefGoogle Scholar
  76. Lorenz, K. & Kandeler, E. (2005). Biochemical characterization of urban soil profiles from Stuttgart, Germany. Soil Biol. Biochem. 37, 1373–1385.CrossRefGoogle Scholar
  77. Lubowski, R. N., Vesterby, M., Bucholtz, S., Baez, A., & Roberts, M. J. (2006). Major uses of land in the United States, 2002. Washington, DC: USDA, Economic Research Service.Google Scholar
  78. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243.CrossRefGoogle Scholar
  79. McDonnell, M. J., Pickett, S. T. A., Groffman, P., Bohlen, P., Pouyat, R. V., Zipperer, W. C., Parmelee, R. W., Carreiro, M. M., & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1, 21–36.CrossRefGoogle Scholar
  80. McGranahan, G., Jacobi, P., Songsore, J., Surjadi, C., & Kjellen, M. (2001). The citizens at risk: From urban sanitation to sustainable cities. London: Earthscan.Google Scholar
  81. McGranahan, G., Marcotullio, P. J., et al. (2005) Urban systems. In Current state and trends: Findings of the condition and trends working group. Ecosystems and human well-being, Vol. 1 (ed. Millennium Ecosystem Assessment, pp. 795–825). Washington, DC: Island Press.Google Scholar
  82. McKinney, M. L. (2002). Urbanization, biodiversity and conservation. BioScience, 52(10), 883–890.CrossRefGoogle Scholar
  83. Newcombe, K., Kalma, J. D., & Aston, A. R. (1978). The metabolism of a city: The case of Hong Kong. Ambio, 7, 3–15.Google Scholar
  84. Nizeyimana, E. L., Petersen, G. W., Imhoff, M. L., Sinclair, H. R., Waltman, S. W., Reed-Margetan, D. S., Levine, E. R., & Russo, J. M. (2001). Assessing the impact of land conversion to urban use on soils with different productivity levels in the USA. Soil Science Society of America Journal, 65, 391–402.Google Scholar
  85. Nowak, D. J., Rowantree, R. A., McPherson, E. G., Sisinni, S. M., Kerkmann, E. R., & Stevens J. C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning, 36, 49–57.CrossRefGoogle Scholar
  86. Ordonez, A., Loredo, J., Miguel, E. D., & Charlesworth, S. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in northern Spain. Archives of Environmental Contamination and Toxicology, 44, 160–170.CrossRefGoogle Scholar
  87. Organization for Economic Cooperation and Development. (1995) Urban energy handbook: Good local practice. Paris: OECD.Google Scholar
  88. Pavao-Zuckerman, M. A., & Coleman, D. C. (2007). Urbanization alters the functional composition, but not taxonomic diversity of the soil nematode community. Applied Soil Ecology, 35, 329–339.CrossRefGoogle Scholar
  89. Patterson, J. C. (1976). Soil compaction and its effects upon urban vegetation. In: Better Trees for Metropolitan Landscapes Symposium Proceedings, USDA Forest Service General Technical Report NE-22.Google Scholar
  90. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.CrossRefGoogle Scholar
  91. Plaut, T. R. (1980). Urban expansion and the loss of farmland in the United States: Implications for the future. American Agricultural Economics Association, 62, 537–542.CrossRefGoogle Scholar
  92. Pouyat, R. V. (1991). The urban-rural gradient: an opportunity to better understand human impacts on forest soils. Proceedings of the Society of American Foresters. 1990 Annual Convention, July 27-August 1, 1990, Washington, D.C., pp. 212–218. Society of American Foresters, Bethesda, Maryland.Google Scholar
  93. Pouyat, R. V., Parmelee, R. W., & Carreiro, M. M. (1994). Environmental effects of forest soil-invertebrate and fungal densities in oak stand along an urban-rural land use gradient. Pedobiologia 38, 385–399.Google Scholar
  94. Pouyat, R. V., McDonnell, M. J., & Pickett, S. T. A. (1997). Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land use gradient. Urban Ecosystems, 1, 117–131.CrossRefGoogle Scholar
  95. Purves, D. (1972). Consequences of trace-element contamination of soils. Environmental Pollution, 3, 17–24.CrossRefGoogle Scholar
  96. Purves, D., & Mackenzie, E. J. (1969). Trace-element contamination of parklands in urban areas. Journal of Soil Science, 20, 288–290.CrossRefGoogle Scholar
  97. Randolph, J. (2004). Environmental land use planning and management. Washington, DC: Island Press.Google Scholar
  98. Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: What urban economies leave out. Environment and Urbanization, 4, 121–130.CrossRefGoogle Scholar
  99. Rees, W. E. (2002). Globalization and sustainability: Conflict or convergence? Bulletin of Science, Technology and Society, 22, 249–268.CrossRefGoogle Scholar
  100. Rerat, A., & Kaushik, S. J. (1995). Nutrition, animal production and the environment. Water Science & Technology, 31, 1–19.CrossRefGoogle Scholar
  101. Rickson, R. J. (2003). Erosion risk assessment on disturbed and reclaimed land. In H. M. Moore, H. R. Fox & S. Elliott (Eds.), Land reclamation, extending the boundaries (pp. 185–192). Lisse, The Netherlands: A. A. Balkema.Google Scholar
  102. Romic, M., & Romic, D. 2003. Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.Google Scholar
  103. Rowntree, R. A. (1984). Forest canopy cover and land use in four eastern United States cities. Urban Ecology, 8, 55–67.CrossRefGoogle Scholar
  104. Rozanov, B. G., Targulian, V., & Orlov, D. S. (1990). Soils. In I. B. L. Turner, II, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews & W. B. Meyer (Eds.), The Earth as transformed by human action, global and regional changes in the biosphere over the past 300 Years (pp. 203–214). Cambridge: Cambridge University Press.Google Scholar
  105. Ruiz-Cortes, E., Reinoso, R., Dias-Barrientos, E., & Madrid, L. (2005). Concentrations of potentially toxic metals in urban soils of Seville: Relationship with different land uses. environmental Geochemistry and Health, 27, 465–474.CrossRefGoogle Scholar
  106. Sanchez-Camazano, M., Sanchez-Martin, M. J., & Lorenzo, L. F. (1994). Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). The Science of the Total Environment, 146/147, 163–168.CrossRefGoogle Scholar
  107. Sanders, R. A., & Stevens, J. C. (1984). Urban forest of Dayton, Ohio: A preliminary assessment. Urban Ecology, 8, 91–98.CrossRefGoogle Scholar
  108. Savage, V. R. (2006). Ecology matters: Sustainable development in Southeast Asia. Sustainability Science, 1.Google Scholar
  109. Schleuss, U., Wu Q., & Blume H.-P. (1998). Variability of soils in urban and periurban areas in Northern Germany. Catena, 33, 255–270.CrossRefGoogle Scholar
  110. Schneider, A., Seto, K. C., Webster, D. R., Cai, J., & Luo, B. (2003). Spatial and temporal patterns of urban dynamics in Chengdu, 1975–2002. APARC: Stanford University.Google Scholar
  111. Schueler, T. R. (1994). The importance of imperviousness. Watershed Protection Techniques, 1, 100–111.Google Scholar
  112. Schulz, N. (2005). Contributions of material and energy flow accounting to urban ecosystems analysis: Case study Singapore. UNU-IAS Working Paper #136, Yokohama: UNU-IAS.Google Scholar
  113. Short, J. R., Fanning, D. S., Foss, J. E., & Patterson, J. C. (1986a). Soils in the Mall in Washington, DC: II. Genesis, classification and mapping. Soil Science Society of America Journal, 50, 705–710.CrossRefGoogle Scholar
  114. Short, J. R., Fanning, D. S., McIntosh, M. S., Foss, J. E., & Patterson, J. C. (1986b). Soils in the Mall in Washington, DC: I. Statistical summary of physical properties. Soil Science Society of America Journal, 50, 699–705.CrossRefGoogle Scholar
  115. Spirn, A. W. (1984). The granite garden. New York: Basic Books.Google Scholar
  116. Sorme, L., Bergback, B., & Lohm, U. (2001). Century perspective of heavy metal use in urban areas. Water, Air and soil Pollution: Focus, 1, 197–211.CrossRefGoogle Scholar
  117. Sukopp, H., Blume, H.-P., & Kunick, W. (1979). The soil, flora, and vegetation of Berlin’s waste lands. In: Nature in Cities, The Natural Environment in the Design and Development of Urban Green Space (ed. I. C. Laurie) pp. 115–132. John Wiley & Sons, Chichester, UK.Google Scholar
  118. Thuy, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils: A case study of Danang-Hoian Area (Vietnam). Environmental Geology, 39, 603–610.CrossRefGoogle Scholar
  119. Torrey, B. B. (2004). Urbanization: An environmental force to be reckoned with (pp. 6). New York: Population Reference Bureau.Google Scholar
  120. UNESCAP. (2000). State of the environment in the Asia Pacific. Bangkok: UNESCAP.Google Scholar
  121. United Nations. (1999). World Urbanization Prospects: 1998 Revisions. New York: DESA, UN.Google Scholar
  122. United Nations. (2006). World urbanization prospects: 2006 revisions. New York: DESA, UN.Google Scholar
  123. US Natural Resources Conservation Service. (1986). Urban hydrology for small watersheds (pp. 164). Washington, DC: United States Department of Agriculture, Conservation Engineering Division.Google Scholar
  124. USDA. (1997). Agricultural resources and environmental indicators 1996–97 (pp. 350). Washington, DC: Economic Research Service, Natural Resources and Environment Division.Google Scholar
  125. USDA. (2001). National resources inventory. Washington, DC: Government Printing Office.Google Scholar
  126. USDI. (2001). Status and trends of wetlands in the coterminous United States, 1986 to 1997. Washington, DC: US Department of Interior.Google Scholar
  127. Vesterby, M., & Heimlich, R. E. (1991). Land use and demographic change: Results from fast-growth counties. Land Economics, 67, 279–291.CrossRefGoogle Scholar
  128. Vesterby, M., & Krupa, K. S. (2001). Major uses of land in the United States, 1997 (pp. 47). Washington, DC: Resource Economics Division, Economic Research Service, US Department of Agriculture.Google Scholar
  129. Wackernagel, M., & Rees, W. (1996). Our ecological footprint. Gabriola Island, Canada: New Society Publishers.Google Scholar
  130. Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., Monfreda, C., Loh, J., Myers, N., Norgaard, R., & Randers, J. (2002). Tracking ecological overshoot of the human economy. Proceedings of the National Academy of Sciences of the United States of America, 99, 9266–9271.CrossRefGoogle Scholar
  131. Warner, J. W., Jr. & W. E. Hanna. 1982. Soil Survey of Central Park, New York. Unpublished report, Soil Conserv. Serv., USDA.Google Scholar
  132. Wang, X. S., Qin, & S. X., Sang, (2005). Accumulation and sources of heavy metals in urban topsoils: a case study from the city of Xuzhou. China Environ Geo., 48, 101–107.CrossRefGoogle Scholar
  133. Wernick, I. K., & Irwin, F. H. (2005). Material flows accounts: A tool for making environmental policy. Washington, DC: World Resources Institute.Google Scholar
  134. Wilcke, W., Muller, S., Kanchanakool, N., & Zech, W. (1998). Urban soil contamination in Bangkok: Heavy metal and aluminum partitioning in topsoils. Geoderma, 86, 211–228.CrossRefGoogle Scholar
  135. Wilkinson, B. H. (2005). Humans as geologic agents: A deep-time perspective. Geology, 33.Google Scholar
  136. Wolman, A. (1965). The metabolism of cities. In Cities (ed. S. American, pp. 156–174). New York: Alfred A. Knopf.Google Scholar
  137. Wu, J., & Hobbs, R. (2002). Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology, 17, 355–365.CrossRefGoogle Scholar
  138. Yokohari, M., Takeuchi, K., Watanabe, T., & Yokota, S. (2000). Beyond greenbelts and zoning: A new planning concept for the environment of Asian mega-cities. Landscape and Urban Planning, 47, 159–171.CrossRefGoogle Scholar
  139. Young, I. M., & Crawford, J. W. (2004). Interactions and self-organization in the soil-microbe complex. Science, 304(5677), 1634–1637.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Peter J. Marcotullio
    • 1
  • Ademola K. Braimoh
    • 2
  • Takashi Onishi
    • 3
  1. 1.Urban PlanningColumbia UniversityUSA
  2. 2.Global Land Project Sapporo Nodal OfficeHokkaido UniversityJapan
  3. 3.Research Center for Advanced Science and TechnologyUniversity of TokyoJapan

Personalised recommendations