Accessing the Inaccessible: Buoyancy-Driven Coastal Currents on the Shelves of Greenland and Eastern Canada

  • Sheldon Bacon
  • Paul G. Myers
  • Bert Rudels
  • David A. Sutherland

One reason why the Polar and Sub-polar shelf seas are an important component of the global climate system is that they support the fluxes of large volumes of both solid and liquid freshwater supplied from the cryospheres, the hydrosphere and the atmosphere.

This chapter is about sub-Arctic shelf waters in the western Atlantic sector, the extent of which is illustrated in Fig. 28.1. We will discuss the relevant coasts of Greenland and eastern Canada: specifically, east Greenland from Belgica Bank through Denmark Strait to Cape Farewell; then west Greenland from the Labrador Sea through Davis Strait to Baffin Bay; then Baffin Island and the coast of Labrador. Finally, we will summarise what we think we know, and also what is important that we do not know.


Coastal Current Freshwater Flux Freshwater Transport Labrador Current East Greenland Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avicola G, Huq P (2002) Scaling analysis for the interaction between a buoyant coastal current and the continental shelf: experiments and observations. J. Phys. Oceanogr. 32:3233–3248.CrossRefGoogle Scholar
  2. Bacon S (2006) RRS Discovery Cruise 298, 23 Aug–25 Sept 2005. Cape Farewell and Eirik Ridge (CFER-1). National Oceanography Centre, Southampton, Cruise Report No. 10, 113 pp.Google Scholar
  3. Bacon S, Yelland MJ (2000) RRS James Clark Ross Cruise 44, 23 July–31 Aug 1999. Circulation and Thermocline Structure–Mixing, Ice and Ocean Weather: CATS-MIAOW. Southampton Oceanography Centre Cruise Report No. 33, 140 pp.Google Scholar
  4. Bacon S, Reverdin G, Rigor IG, Snaith HM (2002) A freshwater jet on the East Greenland Shelf. J. Geophys. Res. 107, doi:10.1029/2001JC000935.Google Scholar
  5. Bourke RH, Newton JL, Paquette RG, Tunnicliffe MD (1987) Circulation and water masses of the East Greenland Shelf. J. Geophys. Res. 92:6729–6740.CrossRefGoogle Scholar
  6. Buch E (2000) Air-sea-ice conditions off Southwest Greenland, 1981–97. J. Northw. Atl. Fish. Sci. 26:123–136.CrossRefGoogle Scholar
  7. Budeus G, Schneider W (1995) On the hydrography of the Northeast Water Polynya. J. Geophys. Res. 100:4287–4299.CrossRefGoogle Scholar
  8. Budeus G, Schneider W, Kattner G (1997) Distribution and exchange of water masses in the Northeast Water Polynya (Greenland Sea). J. Mar. Syst. 10:123–138.CrossRefGoogle Scholar
  9. Cenedese C, Linden PF (2002) Stability of a buoyancy-driven coastal current at the shelf break. J. Fluid Mech. 452:97–121.CrossRefGoogle Scholar
  10. Cenedese C, Whitehead JA (2000) Eddy shedding from a boundary current around a cape over a sloping bottom. J. Phys. Oceanogr. 30:1514–1531.CrossRefGoogle Scholar
  11. Chapman DC (2003) Separation of an advectively trapped buoyancy current at a bathymetric bend. J. Phys. Oceanogr. 33:1108–1121.CrossRefGoogle Scholar
  12. Chapman DC, Beardsley RC (1989) On the origin of shelf water in the Middle Atlantic Bight. J. Phys. Oceanogr. 19:384–391.CrossRefGoogle Scholar
  13. Chen CTA, Liu KK, Macdonald R (2003) Continental margin exchanges. In Fasham MJR (ed.), Ocean biogeochemistry: the role of the Ocean Carbon Cycle in Global Change, Springer, pp 53–97.Google Scholar
  14. Colbourne EB (2004) Decadal changes in the ocean climate in Newfoundland and Labrador waters from the 1950s to the 1990s. J. Northw. Atl. Fish. Sci. 34:41–59.CrossRefGoogle Scholar
  15. Cuny J, Rhines PB, Niiler PP, Bacon S (2002) Labrador Sea boundary currents and the fate of the Irminger Sea water. J. Phys. Oceanogr. 32:627–647.CrossRefGoogle Scholar
  16. Dahl OH (2005) Development of perturbations on a buoyant coastal current. J. Fluid Mech. 527:337–351.CrossRefGoogle Scholar
  17. Doyle JD, Shapiro MA (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus 51A:728–748.Google Scholar
  18. Greenberg DA, Petrie BD (1988) The mean barotropic circulation on the Newfoundland shelf and slope. J. Geophys. Res. 93:15541–15550.CrossRefGoogle Scholar
  19. Griffiths RW, Linden PF (1981) The stability of buoyancy-driven coastal currents. Dyn. Atmos. Oceans 5:281–306.CrossRefGoogle Scholar
  20. Hawker EJ (2005) Nordic Seas Circulation and Exchanges. Ph.D. thesis, University of Southampton, School of Ocean and Earth Science, 239 pp.Google Scholar
  21. Holliday NP, Meyer A, Bacon S, Alderson SG, de Cuevas B (2007) Retroflection of part of the East Greenland Current at Cape Farewell. Geophys. Res. Lett. 34:L07609, doi:10.1029/2006GL029085.CrossRefGoogle Scholar
  22. Jakobsson M, Cherkis N, Woodward J, Macnab R, Coakley B (2000) New grid of Arctic bathymetry aids scientists and mapmakers. Eos 81:89, 93, 96.CrossRefGoogle Scholar
  23. Kiilerich A (1945) On the hydrography of the Greenland Sea. Meddelelser om Gronland, vol 144, Appendix 2, pp 1–63.Google Scholar
  24. Kulan N, Myers PG (2007) Comparing two climatologies of the Labrador Sea: geopotential vs. isopyncal. Atmos. Ocean, in press.Google Scholar
  25. Kvingedal B (2005) Sea ice extent and variability in the Nordic Seas, 1967–2002. In H. Drange, T. Dokken, T. Furevik, R. Gerdes, W. Berger (eds.), The Nordic Seas: an integrated perspective, pp 51–64. Geophysical Monograph 158, American Geophysical Union, Washington, DC.Google Scholar
  26. Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950.CrossRefGoogle Scholar
  27. Lazier JRN, Wright DG (1993) Annual velocity variations in the Labrador Current. J. Phys. Oceanogr. 23:659–678.CrossRefGoogle Scholar
  28. Lentz SJ, Helfrich KR (2002) Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech. 464:251–278.CrossRefGoogle Scholar
  29. Loder JW, Petrie B, Gawarkiewicz G (1998) The coastal ocean off northeastern North America: a large-scale view. In Robinson AR, Brink KH (eds.), The sea, vol 11, Wiley, New York, pp 105–133.Google Scholar
  30. Malmberg, S-A, Gade HG, Sweers HE (1972) Current velocities and volume transports in the East Greenland Current off Cape Nordenskjöld in August-September 1965. Sea Ice Conference Proceedings, Reykjavik, pp 130–139.Google Scholar
  31. Mayer C, Reeh N, Jung-Rothenhaüsler F, Huybrechts P, Oerter H (2000) The subglacial cavity and implied dynamics under Nioghalvfjerdsfjorden Glacier, NE-Greenland. Geophys. Res. Lett. 27:2289–2292.CrossRefGoogle Scholar
  32. Mikkelsen E (1922) Alabama-expeditionen til Grønlands Nordøstkyst 1909–1912. Meddelelser om Grønland, vol 52, 295 pp.Google Scholar
  33. Myers RA, Akenhead SA, Drinkwater K (1990) The influence of Hudson Bay runoff and ice-melt on the salinity of the inner Newfoundland shelf. Atmos. Ocean 28:241–256.Google Scholar
  34. Moore GWK, Renfrew IA (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J. Climate 18:3713–3725.CrossRefGoogle Scholar
  35. Paquette RG, Bourke RH, Newton JF, Perdue WF (1985) The East Greenland Polar Front in Autumn. J. Geophys. Res. 90:4866–4882.CrossRefGoogle Scholar
  36. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Arctic sea ice extents, areas and trends, 1978–1996. J. Geophys. Res. 104:20837–20856.CrossRefGoogle Scholar
  37. Pickart RS, Spall MA, Ribergaard MH, Moore GWK, Milliff RF (2003) Deep convection in the Irminger Sea forced by the Greenland Tip Jet. Nature 424:152–156.CrossRefGoogle Scholar
  38. Pickart RS, Torres DJ, Fratantoni PS (2005) The East Greenland Spill Jet. J. Phys. Oceanogr. 35:1037–1053.CrossRefGoogle Scholar
  39. Rudels B, Fahrbach E, Meincke J, Budéus G, Eriksson P (2002) The East Greenland Current and its contribution to the Denmark Strait Overflow. ICES J. Mar. Sci. 59:1133–1154.CrossRefGoogle Scholar
  40. Rudels B, Björk G, Nilsson J, Winsor P, Lake I, Nohr C (2005) The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean–02 Oden Expedition. J. Mar. Syst. 55:1–30.CrossRefGoogle Scholar
  41. Schneider W, Budeus G (1995) On the generation of the Northeast Water Polynya. J. Geophys. Res. 100:4269–4286.CrossRefGoogle Scholar
  42. Smith SD, Muench RD, Pease CH (1990) Polynyas and leads: an overview of physical processes and environment. J. Geophys. Res. 95:9461–9479.CrossRefGoogle Scholar
  43. Smith EH, Soule FM, Mosby O (1937) The Marion and General Greene Expeditions to Davis Strait and Labrador Sea under direction of the United States Coast Guard 1928–1931–1933–1934–1935. Scientific Results. Part 2. Physical Oceanography. US Treasury Department, Coast Guard Bulletin No. 19. US Government Printing Office, Washington, DC, 258 pp. (Also available as Woods Hole Oceanographic Institution Collected Reprints, 1937 Part II, dated March 1938; Contribution No. 107).Google Scholar
  44. Stein M (2005) North Atlantic Subpolar Gyre Warming–impacts on Greenland Offshore Waters. J. Northw. Atl. Fish. Sci. 36:43–54.CrossRefGoogle Scholar
  45. Sutherland DA, Pickart RS (2007) The East Greenland Coastal Current: structure, variability and forcing. Progress in Oceanography, in press.Google Scholar
  46. Tang CCL, Ross CK, Yao T, Petrie B, DeTracey BM, Dunlap, E (2004) The circulation, water masses and sea ice of Baffin Bay. Prog. Oceanogr. 63:183–228.CrossRefGoogle Scholar
  47. Topp R, Johnson, M (1997) Winter intensification and water mass evolution from yearlong current meters in the Northeast Water Polynya. J. Mar. Syst. 10:157–173.CrossRefGoogle Scholar
  48. Vinje T (2001) Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate 14:3508–3517.CrossRefGoogle Scholar
  49. Wadhams P (1981) The ice cover in the Greenland and Norwegian Seas. Rev. Geophys. 19:345–393.CrossRefGoogle Scholar
  50. Webb DJ (1995) The vertical advection of momentum in Bryan-Cox-Semtner ocean general circulation models. J. Phys. Oceanogr. 25:3186–3195.CrossRefGoogle Scholar
  51. Wilkinson D, Bacon S (2005) The spatial and temporal variability of the East Greenland Coastal Current from historic data. Geophys. Res. Lett. 32:L24618, doi:10.1029/2005GL024232.CrossRefGoogle Scholar
  52. Williams WJ, Gawarkiewicz GG, Beardsley, RC (2001) The adjustment of a shelfbreak jet to cross-shelf topography. Deep-Sea Res. I 48:373–393.CrossRefGoogle Scholar
  53. Wolfe C, Cenedese, C (2006) Laboratory experiments on eddy generation by a buoyant coastal current flowing over variable bathymetry. J. Phys. Oceanogr. 36:395–411.CrossRefGoogle Scholar
  54. Yankovsky AE, Chapman, DC (1997) A simple theory for buoyant coastal discharges. J. Phys. Oceanogr. 27:1386–1401.CrossRefGoogle Scholar
  55. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean and land. J. Geodyn. 34:405–445.CrossRefGoogle Scholar
  56. Zweng MM, Münchow, A (2006) Warming and freshening of Baffin Bay, 1916–2003. J. Geophys. Res. 111:C07016, doi:10.1029/2005JC003093.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Sheldon Bacon
    • 1
  • Paul G. Myers
    • 2
  • Bert Rudels
    • 3
  • David A. Sutherland
    • 4
  1. 1.National Oceanography CentreUK
  2. 2.Department of Earth and Atmospheric SciencesUniversity of AlbertaCanada
  3. 3.Finnish Institute of Marine ResearchFinland
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations