Skip to main content

Tracer Evidence of the Origin and Variability of Denmark Strait Overflow Water

  • Chapter
Arctic–Subarctic Ocean Fluxes

The overflow of dense water from the Nordic Seas to the North Atlantic through the Denmark Strait is an important part of the global thermohaline circulation. Denmark Strait Overflow Water (DSOW) has its sources in the Nordic Seas and the Arctic Ocean and is a complex mixture of several water masses.

The magnitude and variability of the overflow are significant not only for the local oceanography, but also for the global large-scale circulation. Just as the intensity of the overflow is temporally and geographically variable, so are the hydrographic and hydrochemical characteristics of the overflow shifting. Variations in these properties have two possible sources: (1) changes in the characteristics of water masses and, (2) changes in the water mass composition of the overflow. Changes in atmospheric forcing and convection within the source region for DSOW might change its water mass composition and characteristics, changes that in turn will propagate to the North Atlantic Deep Water.

In this chapter, we have synthesised the knowledge of the characterisation and origin of DSOW from historical and recent studies, all using chemical tracers. We are further focusing on the formation and variability of the Denmark Strait Overflow Water as found in the strait or in the nearby Irminger Basin. We are thus ignoring the extensive literature on tracers in the North Atlantic Deep Water further south, as well as those focusing solely on the Arctic Mediterranean. Similarly, results derived solely from “classical” hydrography are presented elsewhere in this volume (Dickson et al. 2008). The increased number of tracer observations and thus the increased spatial and temporal data coverage has enabled more sophisticated water-mass analysis. Although changes in the water mass composition and hydrochemical characteristics of the DSOW is evident on annual basis, continued monitoring of tracers in the Denmark Strait will enable detection of changes in the source region for DSOW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard, K., J. H. Swift and E. C. Carmack (1985) Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research, 90 (C3):4833–4846.

    Article  Google Scholar 

  • Alfimov, V., A. Aldahan and G. Possnert (2004) Tracing water masses with 129I in the western Nordic Seas in early spring 2002. Geophysical Research Letters, 31 (19):L19305.

    Article  Google Scholar 

  • Bacon, S., W. J. Gould and Y. Jia (2003) Open-ocean convection in the Irminger Sea. Geophysical Research Letters, 30 (5).

    Google Scholar 

  • Blindheim, J. (1990) Arctic Intermediate Water in the Norwegian Sea. Deep-Sea Research A, 37 (9):1475–1489.

    Article  Google Scholar 

  • Blindheim, J. and F. Rey (2004) Water-mass formation and distribution in the Nordic Seas during the 1990s. ICES Journal of Marine Science, 61 (5):846–863.

    Article  Google Scholar 

  • Bourke, R. H., A. M. Weigel and R. G. Paquette (1988) The westward turning branch of the West Spitsbergen Current. Journal of Geophysical Research, 93 (C11):14065–14077.

    Article  Google Scholar 

  • Bullister, J. L. and R. F. Weiss (1983) Anthropogenic chlorofluoromethanes in the Greenland and Norwegian seas. Science, 221 (4607):265–268.

    Article  Google Scholar 

  • Bullister, J. L., D. P. Wisegarver and R. E. Sonnerup (2006) Sulfur hexafluoride as a transient tracer in the North Pacific Ocean. Geophysical Research Letters, 33 (18):L18603.

    Article  Google Scholar 

  • Dahlgaard, H. (1995) Transfer of European Coastal Pollution to the Arctic: Radioactive Tracers. Marine Pollution Bulletin, 31 (1–3):3–7.

    Article  Google Scholar 

  • Dickson, B., S. Dye, S. Jónsson, A. Köhl, A. Macrander, M. Marnela, J. Meincke, S. Olsen, B. Rudels, H. Valdimarsson and G. Voet (2008) The overflow flux west of Iceland: varaibility, origins and forcing. In: B. Dickson, J. Meincke and P. Rhines (eds). Arctic-Subarctic Ocean Fluxes: Defining the role of the Northern Seas in Climate. Springer.

    Google Scholar 

  • Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, S. Dye and J. Holfort (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416 (6883):832–837.

    Article  Google Scholar 

  • Dickson, R. R. and J. Brown (1994) The production of North Atlantic Deep Water: Sources, rates, and pathways. Journal of Geophysical Research, 99 (C6):12319–12341.

    Article  Google Scholar 

  • Edmonds, H. N., Z. Q. Zhou, G. M. Raisbeck, F. Yiou, L. Kilius and J. M. Edmond (2001) Distribution and behavior of anthropogenic 129I in water masses ventilating the North Atlantic Ocean. Journal of Geophysical Research, 106 (C4):6881–6894.

    Article  Google Scholar 

  • Eldevik, T., F. Straneo, A. B. Sandø and T. Furevik (2005) Pathways and export of Greenland Sea water. In: H. Drange, T. Dokken, T. Furevik, R. Gerdes and W. Berger (eds) The Nordic Seas: An integrated perspective, Geophysical Monograph, vol. 158. American Geophysical Union, Washington, DC, USA, pp. 89–103.

    Google Scholar 

  • Fogelqvist, E., J. Blindheim, T. Tanhua, S. Østerhus, E. Buch and F. Rey (2003) Greenland-Scotland overflow studied by hydro-chemical multivariate analysis. Deep-Sea Research I, 50 (1):73–102.

    Article  Google Scholar 

  • Frew, R. D., P. F. Dennis, K. J. Heywood, M. P. Meredith and S. M. Boswell (2000) The oxygen isotope composition of water masses in the northern North Atlantic. Deep-Sea Research I, 47 (12):2265–2286.

    Article  Google Scholar 

  • Jeansson, E., S. Jutterström, B. Rudels, L. G. Anderson, K. A. Olsson, E. P. Jones, W. M. Smethie, Jr and J. H. Swift (2008) Sources to the East Greenland Current and its contribution to the Denmark Strait overflow. Progress in Oceanography accepted for publication, 2008.

    Google Scholar 

  • Karstensen, J., P. Schlosser, D. W. R. Wallace, J. L. Bullister and J. Blindheim (2005) Water mass transformation in the Greenland Sea during the 1990s. Journal of Geophysical Research, 110 (C7):C07022.

    Article  Google Scholar 

  • Karstensen, J. and M. Tomczak (2000) OMP analysis package for MATLAB, Online available software, http://www.ldeo.columbia.edu/ejkarsten/omp_std/.

  • Käse, R. (2006) A Riccati model for the Denmark Strait Overflow Variability. Geophysical Research Letters, 33:L21S09.

    Article  Google Scholar 

  • Lacan, F. and C. Jeandel (2004) Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions. Deep-Sea Research I, 51 (1):71–82.

    Article  Google Scholar 

  • Lacan, F. and C. Jeandel (2005) Aquisition of the neodymium isotopic composition of the North Atlantic Deep Water. Geochemistry, Geophysics, Geosystems, 6 (12):Q12008.

    Article  Google Scholar 

  • Law, C. S. and A. J. Watson (2001) Determination of Persian Gulf Water transport and oxygen utilisation rates using SF6 as a novel transient tracer. Geophysical Research Letters, 28 (5):815–818.

    Article  Google Scholar 

  • Lee, A. and D. Ellett (1967) On the water masses of the northwest Atlantic Ocean. Deep-Sea Research, 14:183–190.

    Google Scholar 

  • Livingston, H. D., J. H. Swift and H. G. Ostlund (1985) Artificial radionuclide tracer supply to the Denmark Strait Overflow between 1972 and 1981. Journal of Geophysical Research, 90 (C4):6971–6982.

    Article  Google Scholar 

  • Macrander, A., U. Send, H. Valdimarsson, S. Jónsson and R. H. Käse (2005) Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophysical Research Letters, 32 (6):L06606.

    Article  Google Scholar 

  • Mauritzen, C. (1996) Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Research I, 43 (6):769–806.

    Article  Google Scholar 

  • Messias, M.-J., A. J. Watson, T. Johannessen, K. I. C. Oliver, K. A. Olsson, E. Fogelqvist, J. Olafsson, S. Bacon, J. Balle, N. Bergman, G. Budéus, M. Danielsen, J.-C. Gascard, E. Jeansson, S. R. Olafsdóttir, K. Simonsen, T. Tanhua, K. Van Scoy and J. R. Ledwell (2008) The Greenland Sea Tracer Experiment 1996–2002: horizontal mixing and transport of Greenland Sea Intermediate Water. Progress in Oceanography accepted for publication, 2008.

    Google Scholar 

  • Min, D.-H. (1999) Studies of large-scale intermediate and deep water circulation and ventilation in the North Atlantic, South Indian and Northeast Pacific Oceans, and in the East Sea (Sea of Japan), using chlorofluorocarbons as tracers. Ph.D. thesis, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA.

    Google Scholar 

  • Nydal, R. and J. S. Gislefoss (1996) Further application of bomb C-14 as a tracer in the atmosphere and ocean. Radiocarbon, 38 (3):389–406.

    Google Scholar 

  • Olsson, K. A., E. Jeansson, L. G. Anderson, B. Hansen, T. Eldevik, R. Kristiansen, M.-J. Messias, T. Johannessen and A. J. Watson (2005a) Intermediate water from the Greenland Sea in the Faroe Bank Channel: spreading of released sulphur hexafluoride. Deep-Sea Research I, 52 (2):279–294.

    Article  Google Scholar 

  • Olsson, K. A., E. Jeansson, T. Tanhua and J.-C. Gascard (2005b) The East Greenland Current studied with CFCs and released sulphur hexafluoride. Journal of Marine Systems, 55 (1–2):77–95.

    Article  Google Scholar 

  • Pickart, R. S. and W. M. Smethie, Jr. (1998) Temporal evolution of the deep western boundary current where it enters the sub-tropical domain. Deep-Sea Research I, 45 (7):1053–1083.

    Article  Google Scholar 

  • Pickart, R. S., F. Straneo and G. W. K. Moore (2003) Is Labrador Sea Water formed in the Irminger basin? Deep-Sea Research I, 50 (1):23–52.

    Article  Google Scholar 

  • Preisendorfer, R. W. (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Raisbeck, G. M. and F. Yiou (1999) 129I in the oceans: origins and applications. Science of the Total Environment, 237–238:31–41.

    Article  Google Scholar 

  • Raisbeck, G. M., F. Yiou, Z. Q. Zhou and L. R. Kilius (1995) 129I from nuclear fuel reprocessing facilities at Sellafield (UK) and La Hague (France); potential as an oceanographic tracer. Journal of Marine Systems, 6 (5–6):561–570.

    Article  Google Scholar 

  • Rhein, M. (1994) The Deep Western Boundary Current - tracers and velocities. Deep-Sea Research I, 41 (2):263–281.

    Article  Google Scholar 

  • Rhein, M., J. Fischer, W. M. Smethie, D. Smythe-Wright, R. F. Weiss, C. Mertens, D. H. Min, U. Fleischmann and A. Putzka, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. Journal of Physical Oceanography, 32: 648–665.

    Article  Google Scholar 

  • Ross, C. K. (1976) Transport of overflow water through Denmark Strait. ICES CM, 1976 (C:16).

    Google Scholar 

  • Ross, C. K. (1984) Temperature–salinity characteristics of the “overflow” water in Denmark Strait during “OVERFLOW ‘73”. Rapports et Procès-Verbaux des Réunions Conseil International pour l'Exploration de la Mer, 185:111–119.

    Google Scholar 

  • Rudels, B., G. Björk, J. Nilsson, P. Winsor, I. Lake and C. Nohr (2005) The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition. Journal of Marine Systems, 55 (1–2):1–30.

    Article  Google Scholar 

  • Rudels, B., P. Eriksson, E. Buch, G. Budéus, E. Fahrbach, S.-A. Malmberg, J. Meincke and P. Mälkki (2003) Temporal switching between sources of the Denmark Strait overflow water. ICES Marine Science Symposia, 219:319–325.

    Google Scholar 

  • Rudels, B., P. Eriksson, H. Grönvall, R. Hietala and J. Launiainen (1999a) Hydrographic observations in Denmark Strait in fall 1997, and their implications for the entrainment into the overflow plume. Geophysical Research Letters, 26 (9):1325–1328.

    Article  Google Scholar 

  • Rudels, B., E. Fahrbach, J. Meincke, G. Budéus and P. Eriksson (2002) The East Greenland Current and its contribution to the Denmark Strait overflow. ICES Journal of Marine Science, 59 (6):1133–1154.

    Article  Google Scholar 

  • Rudels, B., H. J. Friedrich and D. Quadfasel (1999b) The Arctic Circumpolar Boundary Current. Deep-Sea Research II, 46 (6–7):1023–1062.

    Article  Google Scholar 

  • Rudels, B., R. Meyer, E. Fahrbach, V. V. Ivanov, S. Østerhus, D. Quadfasel, U. Schauer, V. Tverberg and R. A. Woodgate (2000) Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997. Annales Geophysicae, 18 (6):687–705.

    Article  Google Scholar 

  • Smethie, W. M., Jr and J. H. Swift (1989) The tritium:krypton-85 age of Denmark Strait Overflow Water and Gibbs Fracture Zone Water just south of Denmark Strait. Journal of Geophysical Research, 94 (C6):8265–8275.

    Article  Google Scholar 

  • Smith, J. N., E. P. Jones, S. B. Moran, W. M. Smethie, Jr and W. E. Kieser (2005) Iodine 129/CFC 11 transit times for Denmark Strait Overflow Water in the Labrador and Irminger Seas. Journal of Geophysical Research, 110 (C5):C05006.

    Article  Google Scholar 

  • Stefansson, U. (1962) North Icelandic waters. Rit Fiskideildar, 3:269.

    Google Scholar 

  • Stefánsson, U. (1968) Dissolved nutrients, oxygen and water masses in the Northern Irminger Sea. Deep-Sea Research, 15:541–575.

    Google Scholar 

  • Swift, J. H. and K. Aagaard (1981) Seasonal transitions and water mass formation in the Iceland and Greenland seas. Deep-Sea Research A, 28A (10):1107–1129.

    Article  Google Scholar 

  • Swift, J. H., K. Aagaard and S.-A. Malmberg (1980) The contribution of the Denmark Strait overflow to the deep North Atlantic. Deep-Sea Research A, 27A (1):29–42.

    Article  Google Scholar 

  • Swift, J. H. and K. P. Koltermann (1988) The origin of Norwegian Sea Deep Water. Journal of Geophysical Research, 93 (C4):3563–3569.

    Article  Google Scholar 

  • Tanhua, T. (1997) Halogenated substances as marine tracers. Ph.D. thesis, Department of Analytical and Marine Chemistry, Göteborg University, Göteborg, Sweden.

    Google Scholar 

  • Tanhua, T., K. Bulsiewicz and M. Rhein (2005a) Spreading of overflow water from the Greenland to the Labrador Sea. Geophysical Research Letters, 32 (10):L10605.

    Article  Google Scholar 

  • Tanhua, T. and K. A. Olsson (2006) A note on the oxygen flux in the deep northern overflows. ASOF Newsletter, 5:8–11.

    Google Scholar 

  • Tanhua, T., K. A. Olsson and E. Fogelqvist (2004) A first study of SF6 as a transient tracer in the Southern Ocean. Deep-Sea Research II, 51 (22–24):2683–2699.

    Article  Google Scholar 

  • Tanhua, T., K. A. Olsson and E. Jeansson (2005b) Formation of Denmark Strait overflow water and its hydro-chemical composition. Journal of Marine Systems, 57 (3–4):264–288.

    Article  Google Scholar 

  • Tomczak, M. (1999) Some historical, theoretical and applied aspects of quantitative water mass analysis. Journal of Marine Research, 57 (2):275–303.

    Article  Google Scholar 

  • Tomczak, M. and D. G. B. Large (1989) Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. Journal of Geophysical Research, 94 (C11):16141–16149.

    Article  Google Scholar 

  • Walker, S. J., R. F. Weiss and P. K. Salameh (2000) Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. Journal of Geophysical Research 105 (C6):14285–14296.

    Article  Google Scholar 

  • van Aken, H. M. and C. J. de Boer (1995) On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin. Deep-Sea Research I, 42 (2):165–189.

    Article  Google Scholar 

  • Warner, M. J. and R. F. Weiss (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and sea water. Deep-Sea Research, 32 (12):1485–1497.

    Article  Google Scholar 

  • Watanabe, Y. W., A. Shimamoto and T. Ono (2003) Comparison of time-dependent tracer ages in the western North Pacific: Oceanic background levels of SF6, CFC-11, CFC-12 and CFC-113. Journal of Oceanography, 59 (5):719–729.

    Article  Google Scholar 

  • Watson, A. J., M. J. Messias, E. Fogelqvist, K. A. Van Scoy, T. Johannessen, K. I. C. Oliver, D. P. Stevens, F. Rey, T. Tanhua, K. A. Olsson, F. Carse, K. Simonsen, J. R. Ledwell, E. Jansen, D. J. Cooper, J. A. Kruepke and E. Guilyardi (1999) Mixing and convection in the Greenland Sea from a tracer-release experiment. Nature, 401 (6756):902–904.

    Article  Google Scholar 

  • Waugh, D. W., T. W. N. Haine and T. M. Hall (2004) Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean. Deep-Sea Research I, 51 (11):1475–1491.

    Google Scholar 

  • Waugh, D. W., M. H. Hall and T. W. N. Haine (2003) Relationships among tracer ages. Journal of Geophysical Research, 108 (C5):3138.

    Article  Google Scholar 

  • Weiss, R. F., J. L. Bullister, R. H. Gammon and M. J. Warner (1985) Atmospheric chlorofluoromethanes in the deep equatorial Atlantic. Nature, 314 (6012):608–610.

    Article  Google Scholar 

  • Zhou, Z. Q., G. M. Raisbeck, F. Yiou, L. Kilius, H. N. Edmonds, J. M. Edmond, J. C. Gascard, C. I. Measures and J. Meincke (1995) 129I as a tracer of North Atlantic deep water formation and transport. CSNSM Report 95–11, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Tanhua, T., Olsson, K.A., Jeansson, E. (2008). Tracer Evidence of the Origin and Variability of Denmark Strait Overflow Water. In: Dickson, R.R., Meincke, J., Rhines, P. (eds) Arctic–Subarctic Ocean Fluxes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6774-7_21

Download citation

Publish with us

Policies and ethics