Skip to main content

Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate

A General Introduction

  • Chapter
Arctic–Subarctic Ocean Fluxes

Almost 100 years ago, Helland-Hansen and Nansen (1909) produced the first complete description of the pattern of oceanic exchanges that connect the North Atlantic with the Arctic Ocean through subarctic seas. At a stroke, they placed the science of the Nordic seas on an astonishingly modern footing; as Blindheim and Østerhus (2005) put it, ‘Their work described the sea in such detail and to such precision that investigations during succeeding years could add little to their findings’. Nonetheless, in the century that followed, oceanographers have gradually persisted in the two tasks that were largely inaccessible to the early pioneers – quantifying the exchanges of heat, salt and mass through subarctic seas and, piecing-together evidence for the longer-term (decade to century) variability of the system.

Evidence of variability was not long in coming. As hydrographic time series lengthened into the middle decades of the 20th century, they began to capture evidence of one of the largest and most widespread regime shifts that has ever affected our waters. For these were the decades of “the warming in the north”, when the salinity of North Atlantic Water passing through the Faroe–Shetland Channel reached a century-long high (Dooley et al. 1984), when salinities were so high off Cape Farewell that they were thrown out as erroneous (Harvey 1962), when a precipitous warming of more than 2 °C in the 5-year mean pervaded the West Greenland banks, and when the northward dislocations of biogeographical boundaries for a wide range of species from plankton to commercially important fish, terrestrial mammals and birds were at their most extreme in the 20th century (reviewed in Dickson 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard K and E Carmack, 1989. The role of sea-ice and other freshwater in the Arctic Circulation. J Geophys Res, 94, 14485–14498, doi: 10.1029/89JC01375.

    Article  Google Scholar 

  • Blindheim J and S Østerhus, 2005. The Nordic Seas, main oceanographic features. In: Drange H et al. (Eds) The Nordic Seas: An Integrated Perspective. AGU Monograph 158 American Geophysical Union, Washington, DC, pp. 11–37.

    Google Scholar 

  • Broecker WS and GH Denton, 1989. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim et Cosmochim Acta, 53, 2465–2501.

    Article  Google Scholar 

  • Bryan F, 1986. High latitude salinity effects and inter-hemispheric thermohaline circulations. Nature, 323, 301–304.

    Article  Google Scholar 

  • Curry R, B Dickson and I Yashayaev, 2003. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, 826–829.

    Article  Google Scholar 

  • Curry R and C Mauritzen, 2005. Dilution of the Northern North Atlantic Ocean in recent decades. Science, 308 (5729): 1772–1774.

    Article  Google Scholar 

  • Delworth TL and KW Dixon, 2000. Implications of the recent trend in the Arctic/N Atlantic Oscillation for the North Atlantic thermohaline circulation. J Climate, 13, 3721–3727.

    Article  Google Scholar 

  • Dickson RR, 2002. Variability at all scales and its effect on the ecosystem—an overview. Proc. ICES Hist. Symp. Helsinki, August 2000. ICES Mar Sci Symp Ser, 215, 219–232.

    Google Scholar 

  • Dickson R, B Rudels, S Dye, M Karcher, J Meincke and I Yashayaev, 2007. Current estimates of freshwater flux through Arctic & subarctic seas. Prog Oceanogr, 73, 210–230.

    Article  Google Scholar 

  • Dooley H D, JHA Martin and DJ Ellett, 1984. Abnormal hydrographic conditions in the Northeast Atlantic during the 1970s. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer, 185, 179–187.

    Google Scholar 

  • Haak H, J Jungclaus, T Koenigk, D Svein and U Mikolajewicz, 2005. Arctic Ocean freshwater budget variability. ASOF Newsletter (3), 6–8. [http://asof.npolar.no].

  • Hakkinen S and A Proshutinsky, 2004. Freshwater content variability in the Arctic Ocean. Journal of Geophysical Research, 109, C03051. doi:10.1029/2003JC001940.

    Article  Google Scholar 

  • Hakkinen S and PB Rhines, 2004. Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555–559.

    Article  Google Scholar 

  • Harvey JG, 1962. Hydrographic conditions in Greenland waters during August 1960. Annales Biologiques du Conseil International pour l’Exploration de la Mer, 17: 14–17.

    Google Scholar 

  • Hatun H, AB Sandø, H Drange, B Hansen and H Valdimarsson, 2005. Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation. Science, 309, 1841–1844.

    Article  Google Scholar 

  • Helland-Hansen B and F Nansen, 1909. The Norwegian Sea. Its physical oceanography based upon the Norwegian researches 1900–1904. Report on Norwegian Fishery and Marine Investigations, volume II, part I, Chapter 2, 360 pp., tables, figures (total 390 pp.).

    Google Scholar 

  • Holliday NP, SL Hughes, A Lavin, KA Mork, G Nolan, W Walcowski and A Breszczynska-Moller, 2007. The end of a trend? The progression of unusually warm and saline water from the eastern North Atlantic into the Arctic Ocean. CLIVAR Exchanges, 12 (1) pp 19–20 + figs.

    Google Scholar 

  • ICES, 2007. ICES Report on Ocean Climate 2006. ICES Cooperative Research Report No 289, 59 pp.

    Google Scholar 

  • Jungclaus JH, H Haak, M Latif and U Mikolajewicz, 2005. Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 4013–4031.

    Article  Google Scholar 

  • Manabe S and RJ Stouffer, 1988. Two stable equilibria of a coupled ocean-atmosphere model. J Climate, 1, 841–866.

    Article  Google Scholar 

  • McCartney MS, 1996. Sverdrup Lecture to AGU Fall Meeting San Francisco, December 1996.

    Google Scholar 

  • Mikolajewicz U, M Groger, E Maier-Reimer, G Schurgers, M Vizcaino and AME Winguth, 2007. Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Climate Dyn, doi 10.1007/s00382–006–0204-y.

    Google Scholar 

  • Morison J, K Aagaard and M Steele, 2000. Recent environmental changes in the Arctic: a review. Arctic, 53, 359–371.

    Google Scholar 

  • Østerhus S, WR Turrell, S Jonsson and B Hansen, 2005. Measured volume, heat and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophys Res Lett, 32, L07603, doi:10.1029/2004GL022188.

    Article  Google Scholar 

  • Overpeck J et al. 2005. Arctic system on trajectory to new seasonally ice-free state. EOS, 86, 34, pp 309, 312, 313.

    Article  Google Scholar 

  • Polyakov IV, A Beszczynska, E Carmack, I Dmitrenko, E Fahrbach, I Frolov, R Gerdes, E Hansen, J Holfort, V Ivanov, M Johnson, M Karcher, F Kauker, J Morrison, K Orvik, U Schauer, H Simmons, Ø Skagseth, V Sokolov, M Steele, L Timkhov, D Walsh and J Walsh, 2005. One more step toward a warmer Arctic. Geophys Res Lett, 32, L17605, doi:10.1029/2005GL023740.

    Article  Google Scholar 

  • Polyakov I, L Timokhov, I Dmitrenko, V Ivanov, H Simmons, F McLaughlin, R Dickson, E Fahrbach, J-C Gascard, P Holliday, L Fortier, E Hansen, C Mauritzen, J Piechura, U Schauer and M Steele 2007. The International Polar Year under the banner of Arctic Ocean warming. EOS, 88(40), 398–399.

    Article  Google Scholar 

  • Rahmstorf S, 2003. Thermohaline Circulation: the current climate. Nature, 421, 699.

    Article  Google Scholar 

  • Rahmstorf S and A Ganopolski, 1999. Long term global warming scenarios, computed with an efficient climate model. Climate Change, 43, 353–367.

    Article  Google Scholar 

  • Worthington LV, 1969. An attempt to measure the volume transport of Norwegian Sea overflow water through the Denmark Strait. Deep-Sea Res, 16 (Suppl), 421–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Dickson, B., Meincke, J., Rhines, P. (2008). Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. In: Dickson, R.R., Meincke, J., Rhines, P. (eds) Arctic–Subarctic Ocean Fluxes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6774-7_1

Download citation

Publish with us

Policies and ethics